Шпаргалка: Мышечные ткани. Структурно-функциональной единицей поперечно-полосатой мышечной ткани является мышечное волокно Структурной единицей скелетной мышцы является

Шпаргалка: Мышечные ткани. Структурно-функциональной единицей поперечно-полосатой мышечной ткани является мышечное волокно Структурной единицей скелетной мышцы является

1. Виды мышечной ткани Свойством сократимости обладают практически все виды клеток, благодаря наличию в их цитоплазме сократительного аппарата, представленного сетью тонких микрофиламентов (5-7 нм), состоящих из сократительных белков - актина, миозина, тропомиозина и других. За счет взаимодействия названных белков микрофиламентов осуществляются сократительные процессы и обеспечивается движение в цитоплазме гиалоплазмы, органелл, вакуолей, образование псевдоподий и инвагинаций плазмолеммы, а также процессы фаго- и пиноцитоза, экзоцитоза, деления и перемещения клеток. Содержание сократительных элементов, а, следовательно, и сократительные процессы неодинаково выражены в разных типах клеток. Наиболее выражены сократительные структуры в клетках, основной функцией которых является сокращение. Такие клетки или их производные образуют мышечные ткани , которые обеспечивают сократительные процессы в полых внутренних органах и сосудах, перемещение частей тела относительно друг друга, поддержание позы и перемещение организма в пространстве. Помимо движения при сокращении выделяется большое количество тепла, а, следовательно, мышечные ткани участвуют в терморегуляции организма.
Мышечные ткани неодинаковы по строению , источникам происхождения и иннервации , по функциональным особенностям . Наконец, следует отметить, что любая разновидность мышечной ткани, помимо сократительных элементов (мышечных клеток и мышечных волокон) включает в себя клеточные элементы и волокна рыхлой волокнистой соединительной ткани и сосуды, которые обеспечивают трофику мышечных элементов, осуществляют передачу усилий сокращения мышечных элементов на скелет. Однако, функционально ведущими элементами мышечных тканей являются мышечные клетки или мышечные волокна .
Классификация мышечных тканей:

  • гладкая (неисчерченная) - мезенхимная;
  • специальная - нейрального происхождения и эпидермального происхождения;
  • поперечно-полосатая (исчерченная ):
  • скелетная;
  • сердечная.
Как видно из представленной классификации мышечная ткань подразделяется по строению на две основные группы - гладкую и поперечно-полосатую. Каждая из двух групп в свою очередь подразделяется на разновидности, как по источникам происхождения, так и по строению и функциональным особенностям.
Гладкая мышечная ткань, входящая в состав внутренних органов и сосудов, развивается из мезенхимы.
К специальным мышечным тканям нейрального происхождения относятся гладкомышечные клетки радужной оболочки, эпидермального происхождения - миоэпителиальные клетки слюнных, слезных, потовых и молочных желез.
Поперечно-полосатая мышечная ткань подразделяется на скелетную и сердечную. Обе эти разновидности развиваются нетолько из мезодермы, но из разных ее частей:
  • скелетная - из миотомов сомитов;
  • сердечная - из висцерального листка спланхнотома.
Каждая разновидность мышечной ткани имеет свою структурно-функциональную единицу. Структурно-функциональной единицей гладкой мышечной ткани внутренних органов и радужной оболочки является гладкомышечная клетка - миоцит; специальной мышечной ткани эпидермального происхождения - корзинчатый миоэпителиоцит ; сердечной мышечной ткани - кардиомиоцит; скелетной мышечной ткани - мышечное волокно.

2. Организация поперечно-полосатой скелетной мышечной ткани Структурно-функциональной единицей поперечно полосатой мышечной ткани является мышечное волокно . Оно представляет собой вытянутое цилиндрическое образование с заостренными концами длиной от 1 мм до 40 мм (а по некоторым данным до 120 мм), диаметром 0,1 мм. Мышечное волокно окружено оболочкой - сарколеммой, в которой под электронным микроскопом отчетливо выделяются два листка: внутренний - является типичной плазмолеммой, а наружный представляет собой тонкую соединительнотканную пластинку - базальную пластинку. В узкой щели между плазмолеммой и базальной пластинкой располагаются мелкие клетки - миосателлиты. Таким образом, мышечное волокно является комплексным образованием и состоит из следующих основных структурных компонентов:

  • миосимпласта;
  • клеток миосателлитов;
  • базальной пластинки.
Базальная пластинка образована тонкими коллагеновыми и ретикулярными волокнами, относится к опорному аппарату и выполняет вспомогательную функцию передачи сил сокращения на соединительнотканные элементы мышцы.
Клетки миосателлиты являются камбиальными (ростковыми) элементами мышечных волокон и играют роль в процессах их физиологической и репаративной регенерации.
Миосимпласт является основным структурным компонентом мышечного волокна как по объему, так и по выполняемым функциям. Он образуется посредством слияния самостоятельных недифференцированных мышечных клеток - миобластов. Миосимпласт можно рассматривать как вытянутую гигантскую многоядерную клетку, состоящую из большого числа ядер, цитоплазмы (саркоплазмы), плазмолеммы, включений, общих и специальных органелл. В миосимпласте содержится несколько тысяч (до 10 000) продольно вытянутых светлых ядер, располагающихся на периферии под плазмолеммой. Вблизи ядер локализуются фрагменты слабовыраженной зернистой эндоплазматической сети, пластинчатого комплекса и небольшое число митохондрий. Центриоли в симпласте отсутствуют. В саркоплазме содержатся включения гликогена и миоглобина, аналога гемоглобина эритроцитов.
Отличительной особенностью миосимпласта является также наличие в нем специализированных органелл, к которым относятся :
  • миофибриллы;
  • саркоплазматическая сеть;
  • канальцы Т-системы.
Миофибриллы - сократительные элементы миосимпласта - в большом количестве (до 1000-2000) локализуются в центральной части саркоплазмы миосимпласта. Они объединяются в пучки, между которыми содержатся прослойки саркоплазмы. Между миофибриллами локализуется большое число митохондрий (саркосом). Каждая миофибрилла простирается продольно на протяжении всего миосимпласта и своими свободными концами прикрепляется к его плазмолемме у конических концов. Диаметр миофибриллы составляет 0,2-0,5 мкм.
По своему строению миофибриллы неоднородны по протяжению и подразделяются на:
  • темные (анизотропные) или А-диски , которые образованы более толстыми миофиламентами (10-12 нм), состоящими из белка миозина;
  • и светлые (изотропные) или I-диски , которые образованы тонкими миофиламентами (5-7 нм), состоящими из белка актина.
Темные и светлые диски всех миофибрилл располагаются на одном уровне и обуславливают поперечную исчерченность всего мышечного волокна. Темные и светлые диски в свою очередь состоят из еще более тонких волоконец - протофибрилл или миофиламентов . Посредине I-диска поперечно актиновым миофиламентам проходит темная полоска - телофрагма или Z-линия, посредине А-диска проходит менее выраженная М-линия или мезофрагма. Актиновые миофиламенты по средине I-диска скрепляются белками, составляющими Z-линию, свободными концами частично входит в А-диск между толстыми миофиламентами. При этом, вокруг одного миозинового филамента располагаются 6 актиновых. При частичном сокращении миофибриллы актиновые миофиламенты как бы втягиваются в А-диск и в нем образуется светлая зона или Н-полоска, ограниченная свободными концами актиновых миофиламентов. Ширина Н-полоски зависит от степени сокращения миофибриллы.
Участок миофибриллы, расположенный между двумя Z-линиями носит название саркомера и является структурно-функциональной единицей миофибриллы. Саркомер включает в себя А-диск и расположенные по сторонам от него две половины I-диска. Следовательно, каждая миофибрилла представляет собой совокупность саркомеров. Именно в саркомере осуществляется процесс сокращения. Следует отметить, что конечные саркомеры каждой миофибриллы прикрепляются к плазмолемме миосимпласта актиновыми миофиламентами. Структурные элементы саркомера в расслабленном состоянии можно выразить формулой :
Z+1/2I+1/2A+M+1/2A+1/2I+Z.

3. Мышечные сокращения Процесс сокращения осуществляется посредством взаимодействия актиновых и миозиновых филаментов и образования между ними актин-миозиновых мостиков , посредством которых происходит втягивание актиновых миофиламентов в А-диски укорочение саркомера. Для развития этого процесса необходимы три условия:

  • наличие энергии в виде АТФ;
  • наличие ионов кальция;
  • наличие биопотенциала.
АТФ образуется в саркосомах (митохондриях) в большом числе локализованных между миофибриллами. Выполнение двух последних условий осуществляется с помощью еще двух специализированных органелл - саркоплазматической сети и Т-канальцев .
Саркоплазматическая сеть представляет собой видоизмененную гладкую эндоплазматическую сеть и состоит из расширенных полостей и анастомозирующих канальцев, окружающих миофибриллы. При этом саркоплазматическая сеть подразделяется на фрагменты, окружающие отдельные саркомеры. Каждый фрагмент состоит из двух терминальных цистерн , соединенных полыми анастомозирующими канальцами - L-канальцами. При этом терминальные цистерны охватывают саркомер в области I-дисков, а канальцы - в области А-диска. В терминальных цистернах и канальцах содержатся ионы кальция, которые при поступлении нервного импульса и достижении волны деполяризации мембран саркоплазматической сети, выходят из цистерн и канальцев и распределяются между актиновыми и миозиновыми миофиламентами, инициируя их взаимодействие. После прекращения волны деполяризации ионы кальция устремляются обратно в терминальные цистерны и канальцы. Таким образом, саркоплазматическая сеть является не только резервуаром для ионов кальция, но и играет роль кальциевого насоса.
Волна деполяризации передается на саркоплазматическую сеть от нервного окончания вначале по плазмолемме, а затем по Т-канальцам , которые не являются самостоятельными структурными элементами.
Они представляют собой трубчатые выпячивания плазмолеммы в саркоплазму. Проникая вглубь, Т-канальцы разветвляются и охватывают каждую миофибриллу в пределах одного пучка строго на одном уровне, обычно на уровне Z-полоски или несколько медиальнее - в области соединения актиновых и миозиновых миофиламентов. Следовательно, к каждому саркомеру подходят и окружают его два Т-канальца. По сторонам от каждого Т-канальца располагаются две терминальные цистерны саркоплазматической сети соседних саркомеров, которые вместе с Т-канальцами составляют триаду. Между стенкой Т-канальца и стенками терминальных цистерн имеются контакты, через которые волна деполяризации передается на мембраны цистерн и обуславливает выход из них ионов кальция и начало сокращения. Таким образом, функциональная роль Т-канальцев заключается в передаче биопотенциала с плазмолеммы на саркоплазматическую сеть.
Для взаимодействия актиновых и миозиновых миофиламентов и последующего сокращения кроме ионов кальция необходима также энергия в виде АТФ, которая вырабатывается в саркосомах, в большом количестве располагающихся между миофибриллами.
Процесс взаимодействия актиновых и миозиновых филаментов упрощенно можно представить в следующем виде. Под влиянием ионов кальция стимулируется АТФ-азная активность миозина, что приводит к расщеплению АТФ, с образованием АДФ и энергии. Благодаря выделившейся энергии устанавливаются мостики между актином и миозином (а конкретнее, образуются мостики между головками белка миозина и определенными точками на актиновом филаменте) и за счет укорочения этих мостиков происходит подтягивание актиновых филаментов между миозиновыми. Затем эти связи распадаются (опять же с использованием энергии) и головки миозина образуют новые контакты с другими точками на актиновом филаменте, но расположенными дистальнее предидущих. Так происходит постепенное втягивание актиновых филаментов между миозиновыми и укорочение саркомера. Степень этого сокращения зависит от концентрации ионов кальция вблизи миофиламентов и от содержания АТФ. После смерти организма АТФ в саркосомах не образуется, ее остатки расходуются на образование актин-миозиновых мостиков, а на распад уже не хватает, следствием чего наступает посмертное окоченение мышц, которое прекращается после аутолиза(распада) тканевых элементов.
При полном сокращении саркомера актиновые филаменты достигают М-полоски саркомера. При этом исчезают Н-полоски и I-диски, а формула саркомера может быть выражена в следующем виде:
Z+1/2IA+M+1/2AI+Z.
При частичном сокращении формулу саркомера можно представить в следующем виде:
Z+1/nI+1/nIA+1/2H+M+1/2H+1/nAJ+1/nI+Z.
Одновременное содружественное сокращение всех саркомеров каждой миофибриллы приводит к сокращению всего мышечного волокна. Крайние саркомеры каждой миофибриллы прикрепляются актиновыми миофиламентами к плазмолемме миосимпласта, которая на концах мышечного волокна имеет складчатый характер. При этом, на концах мышечного волокна базальная пластинка не заходит в складки плазмолеммы. Ее прободают тонкие коллагеновые и ретикулярные волокна, проникают в углубления складок плазмолеммы и прикрепляются в тех ее местах, к которым с внутренней стороны прикрепляются актиновые филаменты дистальных саркомеров. Благодаря этому создается прочная связь миосимпласта с волокнистыми структурами эндомизия. Коллагеновые и ретикулярные волокна концевых мышечных волокон, вместе с волокнистыми структурами эндомизия и перимизия в совокупности образуют сухожилия мышц, которые прикрепляются к определенным точкам скелета или вплетаются в сетчатый слой дермы в области лица. Благодаря сокращению мышц происходит перемещение частей или всего организма, а также изменение рельефа лица.

4. Типы мышечных волокон В мышечной ткани различают два основных типа мышечных вол окон , между которыми имеются промежуточные, отличающиеся между собой, прежде всего особенностями обменных процессов и функциональными свойствами и в меньшей степени - структурными особенностями.

  • Волокна I типа - красные мышечные волокна - характеризуются прежде всего высоким содержанием в саркоплазме миоглобина (что и придает им красный цвет), большим числом саркосом, высокой активностью в них сукцинатдегидрогеназы (СДГ), высокой активностью АТФ-азы медленного типа. Эти волокна обладают способностью медленного, но длительного тонического сокращения и малой утомляемостью;
  • Волокна II типа - белые мышечные волокна - характеризуются незначительным содержанием миоглобина, но высоким содержанием гликогена, высокой активностью фосфорилазы и АТФ-базы быстрого типа. Функционально характеризуются способностью быстрого, сильного, но непродолжительного сокращения. Между двумя крайними типами мышечных волокон находятся промежуточные, характеризующиеся различными сочетаниями названных включений и разной активностью перечисленных ферментов.
Мышца как орган состоит из мышечных волокон, волокнистой соединительной ткани, сосудов и нервов. Мышца - это анатомическое образование, основным и функционально ведущим структурным компонентом которого является мышечная ткань . Поэтому не следует рассматривать как синонимы понятия мышечная ткань и мышца.
Волокнистая соединительная ткань образует прослойки в мышце:
  • эндомизий;
  • перимизий;
  • эпимизий;
  • а также сухожилия.
Эндомизий окружает каждое мышечное волокно, состоит из рыхлой волокнистой соединительной ткани и содержит кровеносные и лимфатические сосуды, в основном капилляры, посредством которых обеспечивается трофика волокна. Коллагеновые и ретикулярные волокна эндомизия проникают в базальную пластинку мышечного волокна, тесно с ним связаны и передают силы сокращения волокна на точки скелета.
Перимизий окружает несколько мышечных волокон, собранных в пучки. В нем содержатся более крупные сосуды (артерии и вены, а также артериоло-венулярные анастомозы).
Эпимизий или фасция окружает всю мышцу, способствует функционированию мышцы, как органа. Любая мышца содержит все типы мышечных волокон в различном количественном соотношении. В мышцах, обеспечивающих поддержание позы, преобладают красные волокна. В мышцах, обеспечивающих движение пальцев и кистей, преобладают белые или переходные волокна. Характер мышечного волокна может меняться в зависимости от функциональной нагрузки и тренировки. Установлено, что биохимические, структурные и функциональные особенности мышечного волокна зависят от иннервации. Перекрестная пересадка эфферентных нервных волокон и их окончаний с красного волокна на белое и наоборот приводит к изменению обмена, а также структурных и функциональных особенностей в этих волокнах на противоположный тип.

Скелетная мышечная ткань

Схема скелетной мышцы в разрезе.

Строение скелетной мышцы

Скелетная (поперечно-полосатая) мышечная ткань - упругая, эластичная ткань , способная сокращаться под влиянием нервных импульсов : один из типов мышечной ткани . Образует скелетную мускулатуру человека и животных, предназначенную для выполнения различных действий: движения тела, сокращения голосовых связок, дыхания. Мышцы состоят на 70-75 % из воды.

Гистогенез

Источником развития скелетной мускулатуры являются клетки миотомов - миобласты. Часть из них дифференцируется в местах образования так называемых аутохтонных мышц. Прочие же мигрируют из миотомов в мезенхиму ; при этом они уже детерминированы, хотя внешне не отличаются от других клеток мезенхимы. Их дифференцировка продолжается в местах закладки других мышц тела. В ходе дифференцировки возникает 2 клеточные линии. Клетки первой сливаются, образуя симпласты - мышечные трубки (миотубы). Клетки второй группы остаются самостоятельными и дифференцируются в миосателлиты (миосателлитоциты).

В первой группе происходит дифференцировка специфических органелл миофибрилл , постепенно они занимают большую часть просвета миотубы, оттесняя ядра клеток к периферии.

Клетки второй группы остаются самостоятельными и располагаются на поверхности мышечных трубок.

Строение

Структурной единицей мышечной ткани является мышечное волокно. Оно состоит из миосимпласта и миосателлитоцитов (клеток-спутниц), покрытых общей базальной мембраной .

Длина мышечного волокна может достигать нескольких сантиметров при толщине в 50-100 микрометров.

Строение миосимпласта

Строение миосателлитов

Миосателлиты - одноядерные клетки, прилежащие к поверхности миосимпласта. Эти клетки отличаются низкой дифференцировкой и служат взрослыми стволовыми клетками мышечной ткани. В случае повреждения волокна или длительном увеличении нагрузки клетки начинают делиться, обеспечивая рост миосимпласта.

Механизм действия

Функциональной единицей скелетной мышцы является моторная единица (МЕ). МЕ включает в себя группу мышечных волокон и иннервирующий их мотонейрон . Число мышечных волокон, входящих в состав одной МЕ, варьирует в разных мышцах. Например, там, где требуется тонкий контроль движений (в пальцах или в мышцах глаза), Моторные единицы небольшие, они содержат не более 30 волокон. А в икроножной мышце, где тонкий контроль не нужен, в МЕ насчитывается более 1000 мышечных волокон.

Моторные единицы одной мышцы могут быть разными. В зависимости от скорости сокращения моторные единицы разделяют на медленные (slow (S-МЕ)) и быстрые (fast (F-МЕ)). А F-МЕ в свою очередь делят по устойчивости к утомлению на устойчивые к утомлению (fast-fatigue-resistant (FR-МЕ)) и быстроутомляемые (fast-fatigable (FF-МЕ)).

Соответствующим образом подразделяют иннервирующие данные МЕ мотонейроны. Существуют S-мотонейроны (S-МН), FF-мотонейроны (F-МН) и FR -мотонейроны (FR-МН) S-МЕ характеризуются высоким содержанием белка миоглобина, который способен связывать кислород (О2). Мышцы, преимущественно состоящие из МЕ этого типа, за их темно-красный цвет называются красными. Красные мышцы выполняют функцию поддержания позы человека. Предельное утомление таких мышц наступает очень медленно, а восстановление функций происходит наоборот, очень быстро.

Такая способность обуславливается наличием миоглобина и большого числа митохондрий . МЕ красных мышц, как правило, содержат большое количество мышечных волокон. FR-МЕ составляют мышцы, способные выполнять быстрые сокращения без заметного утомления. Волокна FR-ME содержат большое количество митохондрий и способны образовывать АТФ путем окислительного фосфорилирования.

Как правило, число волокон в FR-ME меньше, чем в S-ME. Волокна FF-ME характеризуются меньшим содержанием митохондрий, чем в FR-ME, а также тем, что АТФ в них образуется за счет гликолиза . В них отсутствует миоглобин , поэтому мышцы, состоящие из МЕ этого типа, называют белыми. Белые мышцы развивают сильное и быстрое сокращение, но довольно быстро утомляются.

Функция

Данный вид мышечной ткани обеспечивает возможность выполнения произвольных движений. Сокращающаяся мышца воздействует на кости или кожу, к которым она прикрепляется. При этом один из пунктов прикрепления остаётся неподвижным - так называемая точка фиксации (лат. púnctum fíxsum ), которая в большинстве случаев рассматривается в качестве начального участка мышцы. Перемещающийся фрагмент мышцы называют подвижной точкой , (лат. púnctum móbile ), которая является местом её прикрепления. Тем не менее, в зависимости от выполняемой функции, punctum fixum может выступать в качестве punctum mobile , и наоборот.

Примечания

См. также

Литература

  • Ю.И. Афанасьев, Н.А. Юрина, Е.Ф. Котовский Гистология. - 5-е изд., перераб. и доп.. - Москва: Медицина, 2002. - 744 с. - ISBN 5-225-04523-5

Ссылки

  • - Механизмы развития мышечной ткани (англ.)

Wikimedia Foundation . 2010 .

Мышечными тканями называют ткани, различные по строению и происхождению, но сходные по способности к выраженным сокращениям. Они обеспечивают перемещения в пространстве всего организма в целом или его частей (пример – скелетная мускулатура) и движение органов внутри организма (пример – сердце, язык, кишечник).

Свойством изменения формы обладают клетки многих тканей, но в мышечных тканях эта способность становится главной функцией.

Общая характеристика и классификация

Основные морфологические признаки элементов мышечных тканей - удлиненная форма, наличие продольно расположенных миофибрилл и миофиламентов - специальных органелл, обеспечивающих сократимость, расположение митохондрий рядом с сократительными элементами, наличие включений гликогена, липидов и миоглобина.

Специальные сократительные органеллы - миофиламенты обеспечивают сокращение, которое возникает при взаимодействии в них двух основных фибриллярных белков - актина и миозина при обязательном участии ионов кальция. Митохондрии обеспечивают эти процессы энергией. Запас источников энергии образуют гликоген и липиды. Миоглобин - это белок-пигмент (наподобие гемоглобина), обеспечивающий связывание кислорода и создание его запаса на момент сокращения мышцы, когда сдавливаются кровеносные сосуды (и поступление кислорода при этом резко падает).

В основу классификации мышечных тканей положены два принципа - морфофункциональный и гистогенетический. В соответствии с морфофункциональным принципом, в зависимости от структуры органелл сокращения, мышечные ткани подразделяют на две подгруппы: исчерченные мышечные ткани и гладкие мышечные ткани.

Поперечнополосатые (исчерченные) мышечные ткани. В цитоплазме их элементов миозиновые филаменты постоянно полимеризованы, образуют с актиновыми нитями постоянно существующие миофибриллы. Последние организованы в характерные комплексы - саркомеры. В соседних миофибриллах структурные субъединицы саркомеров расположены на одинаковом уровне и создают поперечную исчерченность. Исчерченные мышечные ткани сокращаются быстрее, чем гладкие.

Гладкие (неисчерченные) мышечные ткани. Эти ткани характеризуются тем, что вне сокращения миозиновые филаменты деполимеризованы. В присутствии ионов кальция они полимеризуются и вступают во взаимодействие с филаментами актина. Образующиеся при этом миофибриллы не имеют поперечной исчерченности: при специальных окрасках они представлены равномерно окрашенными по всей длине нитями.

В соответствии с гистогенетическим принципом в зависимости от источников развития (т.е. эмбриональных зачатков) мышечные ткани подразделяются на 5 типов:

  1. мезенхимные (из десмального зачатка в составе мезенхимы)
  2. эпидермальные (из кожной эктодермы и из прехордальной пластинки)
  3. нейральные (из нервной трубки)
  4. целомические (из миоэпикардиальной пластинки висцерального листка спланхнотома)
  5. соматические (миотомные)

Первые три типа относятся к подгруппе гладких мышечных тканей, четвертый и пятый - к подгруппе поперечнополосатых.

Поперечнополосатые мышечные ткани

Имеется две основные разновидности поперечнополосатых (исчерченных) тканей - скелетная мышечная ткань и сердечная мышечная ткань.

Скелетная мышечная ткань

Гистогенез

Источником развития элементов скелетной (соматической) поперечнополосатой мышечной ткани являются клетки миотомов - миобласты . Одни из них дифференцируются на месте и участвуют в образовании так называемых аутохтонных мышц. Другие клетки мигрируют из миотомов в мезенхиму. Они уже детерминированы, хотя внешне не отличаются от других клеток мезенхимы. Их дифференцировка продолжается в местах закладки других мышц тела.

В ходе дифференцировки возникают две клеточные линии. Клетки одной из линий сливаются, образуя удлиненные симпласты - мышечные трубочки (миотубы). В них происходит дифференцировка специальных органелл - миофибрилл. В это время в миотубах отмечается хорошо развитая гранулярная эндоплазматическая сеть. Миофибриллы сначала располагаются под плазмолеммой, а затем заполняют большую часть миотубы. Ядра, напротив, из центральных отделов смещаются к периферии. Клеточные центры и микротрубочки при этом полностью исчезают. Гранулярная эндоплазматическая сеть редуцируется в значительной степени. Такие дефинитивные структуры называют миосимпластами.

Клетки другой линии остаются самостоятельными и дифференцируются в миосателлитоциты (или миосателлиты). Эти клетки располагаются на поверхности миосимпластов.

Строение

Основной структурной единицей скелетной мышечной ткани является мышечное волокно, состоящее из миосимпласта и миосателлитоцитов, покрытых общей базальной мембраной.

Длина всего волокна может измеряться сантиметрами при толщине всего 50-100 мкм. Комплекс, состоящий из плазмолеммы миосимпласта и базальной мембраны, называют сарколеммой.

Миосимпласт имеет множество продолговатых ядер, расположенных непосредственно под сарколеммой. Их количество в одном симпласте может достигать нескольких десятков тысяч. У полюсов ядер располагаются органеллы общего значения - аппарат Гольджи и небольшие фрагменты гранулярной эндоплазматической сети. Миофибриллы заполняют основную часть миосимпласта и расположены продольно.

Саркомер - это структурная единица миофибриллы. Каждая миофибрилла имеет поперечные темные и светлые диски, имеющие неодинаковое лучепреломление (анизотропные A-диски и изотропные I-диски). Каждая миофибрилла окружена продольно расположенными и анастомозирующими между собой петлями агранулярной эндоплазматической сети - саркоплазматической сети, или саркоплазматического ретикулума. Соседние саркомеры имеют общую пограничную структуру - Z-линию (или телофрагму). Она построена в виде сети из белковых фибриллярных молекул, среди которых существенную роль играет альфа-актинин. С этой сетью связаны концы тонких, актиновых, филаментов. От соседних Z-линий актиновые филаменты направляются к центру саркомера, но не доходят до его середины. Филаменты актина объединены с Z-линией и нитями миозина фибриллярными нерастяжимыми молекулами небулина. Посередине темного диска саркомера располагается сеть, построенная из миомезина. Она образует в сечении М-линию, или мезофрагму. В узлах этой М-линии закреплены концы толстых, миозиновых филаментов. Другие их концы направляются в сторону Z-линий и располагаются между филаментами актина, но до самих Z-линий тоже не доходят. Вместе с тем эти концы фиксированы по отношению к Z-линиям растяжимыми гигантскими белковыми молекулами титина.

Молекулы миозина имеют длинный хвост и на его конце две головки. При повышении концентрации ионов кальция в области присоединения головок (в своеобразном шарнирном участке) молекула миозина изменяет свою конфигурацию. При этом (поскольку между миозиновыми филаментами расположены актиновые) головки миозина связываются с актином (при участии вспомогательных белков - тропомиозина и тропонина). Затем головка миозина наклоняется и тянет за собой актиновую молекулу в сторону М-линии. Z-линии сближаются, саркомер укорачивается.

Альфа-актининовые сети Z-линий соседних миофибрилл связаны друг с другом промежуточными филаментами. Они подходят к внутренней поверхности плазмолеммы и закрепляются в кортикальном слое цитоплазмы, так что саркомеры всех миофибрилл располагаются на одном уровне. Это и создает при наблюдении в микроскоп впечатление поперечной исчерченности всего волокна.

Источником ионов кальция служат цистерны агранулярной эндоплазматической сети. Они вытянуты вдоль миофибрилл около каждого саркомера и образуют саркоплазматическую сеть . Именно в ней аккумулируются ионы кальция, когда миосимпласт находится в расслабленном состоянии. На уровне Z-линий (у амфибии) или на границе А- и I-дисков (у млекопитающих) канальцы сети меняют направление и располагаются поперечно, образуя расширенные терминальные или (латеральные) L-цистерны .

С поверхности миосимпласта плазмолемма образует длинные трубочки, идущие поперечно в глубину клетки (Т-трубочки ) на уровне границ между темными и светлыми дисками. Когда клетка получает сигнал о начале сокращения, этот сигнал перемещается по плазмолемме в виде потенциала действия и распространяется отсюда на мембрану Т-трубочек. Поскольку эта мембрана сближена с мембранами саркоплазматической сети, состояние последних меняется, кальций освобождается из цистерн сети и взаимодействует с актино-миозиновыми комплексами (они сокращаются). Когда потенциал действия исчезает, кальций снова аккумулируется в цистернах саркоплазматического ретикулума и сокращение миофибрилл прекращается. Для развития усилия сокращения нужна энергия. Она освобождается за счет АТФ- АДФ-превращений. Роль АТФазы выполняет миозин. Источником АТФ служат главным образом митохондрии, поэтому они и располагаются непосредственно между миофибриллами.

Большую роль в деятельности миосимпластов играют включения миоглобина и гликогена. Гликоген служит источником энергии, необходимой не только для совершения мышечной работы, но и поддержания теплового баланса всего организма. Миоглобин связывает кислород, когда мышца расслаблена и через мелкие кровеносные сосуды свободно протекает кровь. Во время сокращения мышцы сосуды сдавливаются, а запасенный кислород освобождается из миоглобина и участвует в биохимических реакциях.

Миосателлитоциты - это малодифференцированные клетки, являющиеся источником регенерации мышечной ткани. Они прилежат к поверхности миосимпласта, так что их плазмолеммы соприкасаются. Миосателлитоциты одноядерны, их ядра овальной формы и мельче, чем в симпластах. Они обладают всеми органеллами общего значения (в том числе и клеточным центром).

Типы мышечных волокон . Разные мышцы (как органы) функционируют в неодинаковых биомеханических условиях. Поэтому и мышечные волокна в составе разных мышц обладают разной силой, скоростью и длительностью сокращения, а также утомляемостью. Ферменты в них обладают разной активностью и представлены в различных изомерных формах. Заметно различие в них содержания дыхательных ферментов - гликолитических и окислительных.

По соотношению миофибрилл, митохондрий и миоглобина различают белые, красные и промежуточные волокна. По функциональным особенностям мышечные волокна подразделяют на быстрые, медленные и промежуточные. Наиболее заметно мышечные волокна различаются особенностями молекулярной организации миозина. Среди различных его изоформ существуют две основных - «быстрая» и «медленная». При постановке гистохимических реакций их различают по АТФазной активности. С этими свойствами коррелирует и активность дыхательных ферментов. Обычно в быстрых волокнах преобладают гликолитические процессы, они более богаты гликогеном, в них меньше миоглобина, поэтому их называют также белыми. В медленных волокнах, напротив, выше активность окислительных ферментов, они богаче миоглобином, выглядят более красными.

Свойства мышечных волокон меняются при изменении нагрузок - спортивных, профессиональных, а также в экстремальных условиях (таких как невесомость). При возврате к обычной деятельности такие изменения обратимы. При некоторых заболеваниях (мышечные атрофии, дистрофии, последствия денервации) мышечные волокна с разными исходными свойствами изменяются неодинаково. Это позволяет уточнять диагноз, для чего исследуют биоптаты скелетных мышц.

Регенерация скелетной мышечной ткани

Ядра миосимпластов делиться не могут, так как у них отсутствуют клеточные центры. Камбиальными элементами служат миосателлитоциты . Пока организм растет, они делятся, а дочерние клетки встраиваются в концы симпластов. По окончании роста размножение миосателлитоцитов затухает. После повреждения мышечного волокна на некотором протяжении от места травмы оно разрушается и его фрагменты фагоцитируются макрофагами.

Восстановление любых тканей организма может осуществляется за счет двух механизмов: гипертрофии и гиперплазии. Под гипертрофией подразумевают компенсаторное увеличение объема самого симпласта, в т.ч. за счет увеличения количества миофибрилл. В симпласте активизируются гранулярная эндоплазматическая сеть и аппарат Гольджи. Происходит синтез веществ, необходимых для восстановления саркоплазмы и миофибрилл, а также сборка мембран, так что восстанавливается целостность плазмолеммы. Поврежденный конец миосимпласта при этом утолщается, образуя мышечную почку. Под гиперплазией понимают пролиферацию миосателлитоцитов. Сохранившиеся рядом с повреждением миосателлитоциты делятся. Одни из них мигрируют к мышечной почке и встраиваются в нее, другие сливаются (так же, как миобласты при гистогенезе) и образуют миотубы, которые затем входят в состав вновь образованных мышечных волокон или формируют новые волокна.

Скелетная мышца как орган

Передача усилий сокращения на скелет осуществляется посредством сухожилий или прикрепления мышц непосредственно к надкостнице. На конце каждого мышечного волокна плазмолемма образует глубокие узкие впячивания. В них со стороны сухожилия или надкостницы проникают тонкие коллагеновые волокна. Последние спирально оплетаются ретикулярными волокнами. Концы волокон направляются к базальной мембране, входят в нее, поворачивают назад и по выходе снова оплетают коллагеновые волокна соединительной ткани.

Между мышечными волокнами находятся тонкие прослойки рыхлой волокнистой - эндомизий . Коллагеновые волокна наружного листка базальной мембраны вплетаются в него, что способствует объединению усилий при сокращении миосимпластов. Более толстые прослойки рыхлой соединительной ткани окружают по нескольку мышечных волокон, образуя перимизий и разделяя мышцу на пучки. Несколько пучков объединяются в более крупные группы, разделенные более толстыми соединительнотканными прослойками. Соединительную ткань, окружающую поверхность мышцы, называют эпимизием .

Васкуляризация . Артерии вступают в мышцу и распространяются по прослойкам соединительной ткани, постепенно истончаясь. Ветви 5-6-го порядка образуют в перимизии артериолы. В эндомизии расположены капилляры. Они идут вдоль мышечных волокон, анастомозируя друг с другом. Венулы, вены и лимфатические сосуды проходят рядом с приносящими сосудами. Как обычно, рядом с сосудами много тканевых базофилов, принимающих участие в регуляции проницаемости сосудистой стенки.

Иннервация . В мышцах выявлены миелинизированные эфферентные (двигательные), афферентные (чувствительные), а также немиелинизированные вегетативные нервные волокна. Отросток нервной клетки, приносящий импульс от моторного нейрона спинного мозга, ветвится в перимизии. Каждая его ветвь проникает сквозь базальную мембрану, и у поверхности симпласта на плазмолемме образует терминали, участвуя в организации так называемой моторной бляшки, или нервно-мышечного соединения. При поступлении нервного импульса из терминали выделяется ацетилхолин - медиатор, который вызывает возбуждающий потенциал действия, распространяющееся отсюда по плазмолемме миосимпласта.

Итак, каждое мышечное волокно иннервируется самостоятельно и окружено сетью гемокапилляров, образуя комплекс, именуемый мионом . Группа же мышечных волокон, иннервируемых одним мотонейроном, называется нервно-мышечной единицей. Характерно, что мышечные волокна, принадлежащие к одной нервно-мышечной единице, лежат не рядом, а расположены мозаично среди волокон, относящихся к другим единицам.

Чувствительные нервные окончания располагаются не на рабочих мышечных волокнах, а связаны со специализированными мышечными волокнами в так называемых мышечных веретенах , которые расположены в перимизии. Волокна в таких чувствительных мышечных веретенах именуются интрафузальными волокнами, а обычные рабочие мышечные волокна – экстрафузальными.

Интрафузальные мышечные волокна веретен значительно тоньше рабочих. Существует два их вида - волокна с ядерной сумкой и волокна с ядерной цепочкой. Каждое мышечное волокно веретена спирально обвито терминалью чувствительного нервного волокна. В результате сокращения или расслабления рабочих мышечных волокон изменяется натяжение соединительнотканной капсулы веретена, соответственно изменяется тонус интрафузальных мышечных волокон. Вследствие этого возбуждаются чувствительные нервные окончания, обвивающие их, и в области терминалей возникают афферентные нервные импульсы. На каждом миосимпласте располагается также своя моторная бляшка. Поэтому интрафузальные мышечные волокна постоянно находятся в напряжении, подстраиваясь к длине мышечного брюшка в целом.

Сердечная мышечная ткань

Гистогенез и виды клеток. Источники развития сердечной поперечнополосатой мышечной ткани - симметричные участки висцерального листка спланхнотома в шейной части зародыша - так называемые миоэпикардиалъные пластинки. Из них дифференцируются также клетки мезотелия эпикарда. В ходе гистогенеза возникает 3 вида кардиомиоцитов:

  1. рабочие, или типичные, или же сократительные, кардиомиоциты,
  2. атипичные кардиомиоциты (сюда входят пейсмекерные, проводящие и переходные кардиомиоциты, а также
  3. секреторные кардиомиоциты.

Рабочие (сократительные ) кардиомиоциты образуют свои цепочки. Укорачиваясь, они обеспечивают силу сокращения всей сердечной мышцы. Рабочие кардиомиоциты способны передавать управляющие сигналы друг другу. Синусные (пейсмекерные) кардиомиоциты способны автоматически в определенном ритме сменять состояние сокращения на состояние расслабления. Они воспринимают управляющие сигналы от нервных волокон, в ответ на что изменяют ритм сократительной деятельности. Синусные (пейсмекерные) кардиомиоциты передают управляющие сигналы переходным кардиомиоцитам, а последние - проводящим. Проводящие кардиомиоциты образуют цепочки клеток, соединенных своими концами. Первая клетка в цепочке воспринимает управляющие сигналы от синусных кардиомиоцитов и передает их далее - другим проводящим кардиомиоцитам. Клетки, замыкающие цепочку, передают сигнал через переходные кардиомиоциты рабочим.

Секреторные кардиомиоциты выполняют особую функцию. Они вырабатывают гормон - натрийуретический фактор , участвующий в процессах регуляции мочеобразования и в некоторых других процессах.

Сократительные кардиомиоциты имеют удлиненную (100-150 мкм) форму, близкую к цилиндрической. Их концы соединяются друг с другом, так что цепочки клеток составляют так называемые функциональные волокна (толщиной до 20 мкм). В области контактов клеток образуются так называемые вставочные диски . Кардиомиоциты могут ветвиться и образуют трехмерную сеть. Их поверхности покрыты базальной мембраной, в которую снаружи вплетаются ретикулярные и коллагеновые волокна. Ядро кардиомиоцита (иногда их два) овальное и лежит в центральной части клетки. У полюсов ядра сосредоточены немногочисленные органеллы общего значения. Миофибриллы слабо обособлены друг от друга, могут расщепляться. Их строение аналогично строению миофибрилл миосимпласта скелетного мышечного волокна. От поверхности плазмолеммы в глубь кардиомиоцита направлены Т-трубочки, находящиеся на уровне Z-линии. Их мембраны сближены, контактируют с мембранами гладкой эндоплазматической (т.е. саркоплазматической) сети. Петли последней вытянуты вдоль поверхности миофибрилл и имеют латеральные утолщения (L-системы), формирующие вместе с Т-трубочками триады или диады. В цитоплазме имеются включения гликогена и липидов, особенно много включений миоглобина. Механизм сокращения кардиомиоцитов такой же, как у миосимпласта.

Кардиомиоциты соединяются друг с другом своими торцевыми концами. Здесь образуются так называемые вставочные диски: эти участки выглядят как тонкие пластинки при увеличении светового микроскопа . Фактически же концы кардиомиоцитов имеют неровную поверхность, поэтому выступы одной клетки входят во впадины другой. Поперечные участки выступов соседних клеток соединены друг с другом интердигитациями и десмосомами. К каждой десмосоме со стороны цитоплазмы подходит миофибрилла, закрепляющаяся концом в десмоплакиновом комплексе. Таким образом, при сокращении тяга одного кардиомиоцита передается другому. Боковые поверхности выступов кардиомиоцитов объединяются нексусами (или щелевыми соединениями). Это создает между ними метаболические связи и обеспечивает синхронность сокращений.

Возможности регенерации сердечной мышечной ткани. При длительной усиленной работе (например, в условиях постоянно повышенного артериального давления крови) происходит рабочая гипертрофия кардиомиоцитов. Стволовых клеток или клеток-предшественников в сердечной мышечной ткани не обнаружено, поэтому погибающие кардиомиоциты (в частности, при инфаркте миокарда) не восстанавливаются, а замещаются элементами соединительной ткани.

Гладкие мышечные ткани

По происхождению различают три группы гладких (или неисчерченных) мышечных тканей - мезенхимные, эпидермальные и нейральные.

Мышечная ткань мезенхимного происхождения

Гистогенез. Стволовые клетки и клетки-предшественники гладкой мышечной ткани, будучи уже детерминированными, мигрируют к местам закладки органов. Дифференцируясь, они синтезируют компоненты матрикса и коллаген базальной мембраны, а также эластин. У дефинитивных клеток (миоцитов) синтетическая способность снижена, но не исчезает полностью.

Структурно-функциональной единицей гладкой, или неисчерченной, мышечной ткани является гладко-мышечная клетка, или гладкий миоцит - это веретеновидная клетка длиной 20-500 мкм, шириной 5-8 мкм. Ядро клетки палочковидное, находится в ее центральной части. Когда миоцит сокращается, его ядро изгибается и даже закручивается. Органеллы общего значения, среди которых много митохондрий, сосредоточены в цитоплазме около полюсов ядра. Аппарат Гольджи и гранулярная эндо плазматическая сеть развиты слабо, что свидетельствует о малой активности синтетических функций. Рибосомы в большинстве своем расположены свободно.

Филаменты актина образуют в цитоплазме трехмерную сеть, вытянутую преимущественно продольно, точнее косо-продольно. Концы филаментов скреплены между собой и с плазмолеммой специальными сшивающими белками. Эти участки хорошо видны на электронных микрофотографиях как плотные тельца.

Миозиновые филаменты находятся в деполимеризованном состоянии. Мономеры миозина располагаются рядом с филаментами актина. Сигнал к сокращению обычно поступает по нервным волокнам. Медиатор, который выделяется из их терминалей, изменяет состояние плазмолеммы. Она образует впячивания - кавеолы, в которых концентрируются ионы кальция. Кавеолы отшнуровываются в сторону цитоплазмы в виде пузырьков (здесь из пузырьков освобождается кальций). Это влечет за собой как полимеризацию миозина, так и взаимодействие миозина с актином. Актиновые филаменты смещаются друг другу навстречу, плотные пятна сближаются, усилие передается на плазмолемму, и вся клетка укорачивается. Когда поступление сигналов со стороны нервной системы прекращается, ионы кальция эвакуируются из кавеол, миозин деполимеризуется и «миофибриллы» распадаются. Таким образом, актино-миозиновые комплексы существуют в гладких миоцитах только в период сокращения.

Гладкие миоциты располагаются без заметных межклеточных пространств и разделены базальной мембраной. На отдельных участках в ней образуются «окна», поэтому плазмолеммы соседних миоцитов сближаются. Здесь формируются нексусы, и между клетками возникают не только механические, но и метаболические связи. Поверх «чехликов» из базальной мембраны между миоцитами проходят эластические и ретикулярные волокна, объединяющие клетки в единый тканевой комплекс. Ретикулярные волокна проникают в щели на концах миоцитов, закрепляются там и передают усилие сокращения клетки всему их объединению.

Регенерация. Физиологическая регенерация гладкой мышечной ткани проявляется в условиях повышенных функциональных нагрузок. Наиболее отчетливо это видно в мышечной оболочке матки при беременности. Такая регенерация осуществляется не столько на тканевом, сколько на клеточном уровне: миоциты растут, в цитоплазме активизируются синтетические процессы, количество миофиламентов увеличивается (рабочая гипертрофия клеток). Не исключена, однако, и пролиферация клеток (т.е. гиперплазия).

В составе органов миоциты объединяются в пучки, между которыми располагаются тонкие прослойки соединительной ткани. В эти прослойки вплетаются ретикулярные и эластические волокна, окружающие миоциты. В прослойках проходят кровеносные сосуды и нервные волокна. Терминали последних оканчиваются не непосредственно на миоцитах, а между ними. Поэтому после поступления нервного импульса медиатор распространяется диффузно, возбуждая сразу многие клетки. Гладкая мышечная ткань мезенхимного происхождения представлена главным образом в стенках кровеносных сосудов и многих трубчатых внутренних органов, а также образует отдельные мелкие мышцы.

Гладкая мышечная ткань в составе конкретных органов имеет неодинаковые функциональные свойства. Это обусловлено тем, что на поверхности органов имеются разные рецепторы к конкретным биологически активным веществам. Поэтому и на многие лекарственные препараты их реакция неодинакова.

Гладкая мышечная ткань эпидермального происхождения

Миоэпителиальные клетки развиваются из эпидермального зачатка. Они встречаются в потовых, молочных, слюнных и слезных железах и имеют общих предшественников с железистыми секреторными клетками. Миоэпителиальные клетки непосредственно прилежат к собственно эпителиальным и имеют общую с ними базальную мембрану. При регенерации те и другие клетки восстанавливаются из общих малодифференцированных предшественников. Большинство миоэпителиальных клеток имеют звездчатую форму. Эти клетки нередко называют корзинчатыми: их отростки охватывают концевые отделы и мелкие протоки желез. В теле клетки располагаются ядро и органеллы общего значения, а в отростках - сократительный аппарат, организованный, как и в клетках мышечной ткани мезенхимного типа.

Гладкая мышечная ткань нейрального происхождения

Миоциты этой ткани развиваются из клеток нейрального зачатка в составе внутренней стенки глазного бокала. Тела этих клеток располагаются в эпителии задней поверхности радужки. Каждая из них имеет отросток, который направляется в толщу радужки и ложится параллельно ее поверхности. В отростке находится сократительный аппарат, организованный так же, как и во всех гладких миоцитах. В зависимости от направления отростков (перпендикулярно или параллельно краю зрачка) миоциты образуют две мышцы - суживающую и расширяющую зрачок.

Некоторые термины из практической медицины:

  • лейомиома -- доброкачественная опухоль, развивающаяся из гладкой мышечной ткани;
  • миогелез -- образование в мышцах болезненных очагов уплотнения, обусловленное переходом коллоидов миофибрилл в фазу геля, их гомогенизацией и восковидным некрозом; наблюдается, напр., при охлаждении тела, травмах;
  • миоциты Аничкова -- клетки с характерным расположением ядерного хроматина в виде зубчатой полоски, проявляющие фагоцитарную активность; встречаются в миокарде, напр. при миокардитах;

Мышечные ткани представляют собой группу тканей различного происхождения и строения, объединенных на основании общего признака - выраженной сократительной способности, благодаря которой они могут выполнять свою основную функцию - перемещать тело или его части в пространстве.

Важнейшие свойства мышечных тканей. Структурные элементы мышечных тканей (клетки, волокна) обладают удлиненной формой и способны к сокращению благодаря мощному развитию сократительного аппарата. Для последнего характерно высокоупорядоченное расположение актиновых и миозиновых миофиламентов, создающее оптимальные условия для их взаимодействия. Это достигается связью сократимых структур с особыми элементами цитоскелета и плазмолеммой (сарколеммой), выполняющими опорную функцию. В части мышечных тканей миофиламенты образуют органеллы специального значения - миофибриллы. Для мышечного сокращения требуется значительное количество энергии, поэтому в структурных элементах мышечных тканей имеется большое количество митохондрий и трофических включений (липидных капель, гранул гликогена), содержащих субстраты - источники энергии. Поскольку мышечное сокращение протекает с участием ионов кальция, в мышечных клетках и волокнах хорошо развиты структуры, осуществляющие его накопление и выделение - агранулярная эндоплазматическая сеть (саркоплазматическая сеть), кавеолы.

Классификация мышечных тканей основана на признаках их (а) строения и функции (морфофункциональная классификация) и (б) происхождения (гистогенетическая классификация).

Морфофункциональная классификация мышечных тканей выделяет поперечнополосатые (исчерченные) мышечные ткани и гладкую мышечную ткань. Поперечнополосатые мышечные ткани образованы структурными элементами (клетками, волокнами), которые обладают поперечной исчерченностью вследствие особого упорядоченного взаиморасположения в них актиновых и миозиновых миофиламентов. К поперечнополосатым мышечным тканям относят скелетную и сердечную мышечную ткани. Гладкая мышечная ткань состоит из клеток, не обладающих поперечной исчерченностью. Наиболее распространенным видом этой ткани является гладкая мышечная ткань, входящая в состав стенки различных органов (бронхов, желудка, кишки, матки, маточной трубы, мочеточника, мочевого пузыря и сосудов).

Гистогенетическая классификация мышечных тканей выделяет три основных типа мышечных тканей: соматический (скелетная мышечная ткань), целомический (сердечная мышечная ткань) и мезенхимный (гладкая мышечная ткань внутренних органов), а также два дополнительных: миоэпителиальные клетки (видоизмененные эпителиальные сократимые клетки в концевых отделах и мелких выводных протоках некоторых желез) и мионейральные элементы (сократимые клетки нейрального происхождения в радужке глаза).

Скелетная поперечнополосатая (исчерченная) мышечная ткань по своей массе превышает любую другую ткань организма и является самой распространенной мышечной тканью тела человека. Она обеспечивает перемещение тела и его частей в пространстве и поддержание позы (входит в состав локомоторного аппарата), образует глазодвигательные мышцы, мышцы стенки полости рта, языка, глотки, гортани. Аналогичное строение имеет нескелетная висцеральная исчерченная мышечная ткань, которая обнаруживается в верхней трети пищевода, входит в состав наружных анального и уретрального сфинктеров.

Скелетная поперечнополосатая мышечная ткань развивается в эмбриональном периоде из миотомов сомитов, дающих начало активно делящимся миобластам - клеткам, которые располагаются цепочками и сливаются друг с другом в области концов с образованием мышечных трубочек (миотубул) , превращающихся в мышечные волокна. Такие структуры, образованные единой гигантской цитоплазмой и многочисленными ядрами, в отечественной литературе традиционно именуют симпластами (в данном случае - миосимпластами), однако этот термин отсутствует в принятой международной терминологии. Некоторые миобласты не сливаются с другими, располагаясь на поверхности волокон и давая начало миосателлитоцитам - мелким клеткам, которые являются камбиальными элементами скелетной мышечной ткани. Скелетная мышечная ткань образована собранными в пучки поперечнополосатыми мышечными волокнами (рис. 87), являющимися ее структурно-функциональными единицами.

Мышечные волокна скелетной мышечной ткани представляют собой цилиндрические образования вариабельной длины (от миллиметров до 10-30 см). Их диаметр также широко варьирует в зависимости от принадлежности к определенной мышце и типу, функционального состояния, степени функциональной нагрузки, состояния питания

и других факторов. В мышцах мышечные волокна образуют пучки, в которых они лежат параллельно и, деформируя друг друга, часто приобретают неправильную многогранную форму, что особенно хорошо видно на поперечных срезах (см. рис. 87). Между мышечными волокнами располагаются тонкие прослойки рыхлой волокнистой соединительной ткани, несущие сосуды и нервы - эндомизий. Поперечная исчерченность скелетных мышечных волокон обусловлена чередованием темных анизотропных дисков (полос А) и светлых изотропных дисков (полос I). Каждый изотропный диск рассекается надвое тонкой темной линией Z - телофрагмой (рис. 88). Ядра мышечного волокна - сравнительно светлые, с 1-2 ядрышками, диплоидные, овальные, уплощенные - лежат на его периферии под сарколеммой и располагаются вдоль волокна. Снаружи сарколемма покрыта толстой базальной мембраной, в которую вплетаются ретикулярные волокна.

Миосателлитоциты (клетки-миосателлиты) - мелкие уплощенные клетки, располагающиеся в неглубоких вдавлениях сарколеммы мышечного волокна и покрытые общей базальной мембраной (см. рис. 88). Ядро миосателлитоцита - плотное, относительно крупное, органеллы мелкие и немногочисленные. Эти клетки активируются при повреждении мышечных волокон и обеспечивают их репаративную регенерацию. Сливаясь с остальной частью волокна при усиленной нагрузке, миосателлитоциты участвуют в его гипертрофии.

Миофибриллы образуют сократительный аппарат мышечного волокна, располагаются в саркоплазме по ее длине, занимая центральную часть, и отчетливо выявляются на поперечных срезах волокон в виде мелких точек (см. рис. 87 и 88).

Миофибриллы обладают собственной поперечной исчерченностью, причем в мышечном волокне они располагаются столь упорядоченно, что изотропные и анизотропные диски разных миофибрилл совпадают между собой, обусловливая поперечную исчерченность всего волокна. Каждая миофибрилла образована тысячами повторяющихся последовательно связанных между собой структур - саркомеров.

Саркомер (миомер) является структурно-функциональной единицей миофибриллы и представляет собой ее участок, расположенный между двумя телофрагмами (линиями Z). Он включает анизотропный диск и две половины изотропных дисков - по одной половине с каждой стороны (рис. 89). Саркомер образован упорядоченной системой толстых (миозиновых) и тонких (актиновьх) миофиламентов. Толстые миофиламенты связаны с мезофрагмой (линией М) и сосредоточены в анизотропном диске,

а тонкие миофиламенты прикреплены к телофрагмам (линиям Z), образуют изотропные диски и частично проникают в анизотропный диск между толстыми нитями вплоть до светлой полосы Н в центре анизотропного диска.

Механизм мышечного сокращения описывается теорией скользящих нитей, согласно которой укорочение каждого саркомера (а, следовательно, миофибрилл и всего мышечного волокна) при сокращении происходит благодаря тому, что в результате взаимодействия актина и миозина в присутствии кальция и АТФ тонкие нити вдвигаются в промежутки между толстыми без изменения их длины. При этом ширина анизотропных дисков не меняется, а ширина изотропных дисков и полос Н - уменьшается. Строгая пространственная упорядоченность взаимодействия множества толстых и тонких миофиламентов в саркомере определяется наличием сложно организованного поддерживающего аппарата, к которому, в частности, относятся телофрагма и мезофрагма. Кальций выделяется из саркоплазматической сети, элементы которой оплетают каждую миофибриллу, после поступления сигнала с сарколеммы по Т-трубочкам (совокупность этих элементов описывается как саркотубулярная система).

Скелетная мышца как орган состоит из пучков мышечных волокон, связанных воедино системой соединительнотканных компонентов (рис. 90). Снаружи мышцу покрывает эпимизий - тонкий, прочный и гладкий чехол из плотной волокнистой соединительной ткани, отдающий вглубь органа более тонкие соединительнотканные перегородки - перимизий, который окружает пучки мышечных волокон. От перимизия внутрь пучков мышечных волокон отходят тончайшие прослойки рыхлой волокнистой соединительной ткани, окружающие каждое мышечное волокно - эндомизий.

Типы мышечных волокон в скелетной мышце - разновидности мышечных волокон с определенными структурными, биохимическими и функцио нальными различиями. Типирование мышечных волокон производится на препаратах при постановке гистохимических реакций выявления ферментов - например, АТФазы, лактатдегидрогеназы (ЛДГ), сукцинатдегидрогеназы (СДГ) (рис. 91) и др. В обобщенном виде можно условно выделить три основных типа мышечных волокон, между которыми существуют переходные варианты.

Тип I (красные) - медленные, тонические, устойчивые к утомлению, с небольшой силой сокращения, окислительные. Характеризуются малым диаметром, относительно тонкими миофибриллами,

высокой активностью окислительных ферментов (например, СДГ), низкой активностью гликолитических ферментов и миозиновой АТФазы, преобладанием аэробных процессов, высоким содержанием пигмента миоглобина (определяющим их красный цвет), крупных митохондрий и липидных включений, богатым кровоснабжением. Численно преобладают в мышцах, выполняющих длительные тонические нагрузки.

Тип IIВ (белые) - быстрые, тетанические, легко утомляющиеся, с большой силой сокращения, гликолитические. Характеризуются большим диаметром, крупными и сильными миофибриллами, высокой активностью гликолитических ферментов (например, ЛДГ) и АТФазы, низкой активностью окислительных ферментов, преобладанием анаэробных процессов, относительно низким содержанием мелких митохондрий, липидов и миоглобина (определяющим их светлый цвет), значительным количеством гликогена, сравнительно слабым кровоснабжением. Преобладают в мышцах, выполняющих быстрые движения, например, мышцах конечностей.

Тип IIА (промежуточные) - быстрые, устойчивые к утомлению, с большой силой, оксилительно-гликолитические. На препаратах напоминают волокна типа I. В равной степени способны использовать энергию, получаемую путем окислительных и гликолитических реакций. По своим морфологическим и функциональным характеристикам занимают положение, промежуточное между волокнами типа I и IIB.

Скелетные мышцы человека являются смешанными, т. е. содержат волокна различных типов, которые распределены в них мозаично (см. рис. 91).

Сердечная поперечнополосатая (исчерченная) мышечная ткань встречается в мышечной оболочке сердца (миокарде) и устьях связанных с ним крупных сосудов. Основным функциональным свойством сердечной мышечной ткани служит способность к спонтанным ритмическим сокращениям, на активность которых влияют гормоны и нервная система. Эта ткань обеспечивает сокращения сердца, которые поддерживают циркуляцию крови в организме. Источником развития сердечной мышечной ткани служит миоэпикардиальная пластинка висцерального листка спланхнотома (целомическая выстилка в шейной части эмбриона). Клетки этой пластинки (миобласты) активно размножаются и постепенно превращаются в сердечные мышечные клетки - кардиомиоциты (сердечные миоциты). Выстраиваясь в цепочки, кардиомиоциты формируют сложные межклеточные соединения - вставочные диски, связывающие их в сердечные мышечные волокна.

Зрелая сердечная мышечная ткань образована клетками - кардиомиоцитами, связанными друг с другом в области вставочных дисков и образующими трехмерную сеть ветвящихся и анастомозирующих сердечных мышечных волокон (рис. 92).

Кардиомиоциты (сердечные миоциты) - цилиндрические или ветвящиеся клетки, более крупные в желудочках. В предсердиях они обычно имеют неправильную форму и меньшие размеры. Эти клетки содержат одно или два ядра и саркоплазму, покрыты сарколеммой, которая снаружи окружена базальной мембраной. Их ядра - светлые, с преобладанием эухроматина, хорошо заметными ядрышками - занимают в клетке центральное положение. У взрослого человека значительная часть кардиомиоцитов - полиплоидные, более половины - двуядерные. Саркоплазма кардиомиоцитов содержит многочисленные органеллы и включения, в частности, мощный сократительный аппарат, который сильно развит в сократительных (рабочих) кардиомиоцитах (в особенности, в желудочковых). Сократительный аппарат представлен сердечными исчерченными миофибриллами, по строению сходными с миофибриллами волокон скелетной мышечной ткани (см. рис. 94); в совокупности они обусловливают поперечную исчерченность кардиомиоцитов.

Между миофибриллами у полюсов ядра и под сарколеммой располагаются очень многочисленные и крупные митохондрии (см. рис. 93 и 94). Миофибриллы окружены элементами саркоплазматической сети, связанными с Т-трубочками (см. рис. 94). Цитоплазма кардиомиоцитов содержит кислородсвязывающий пигмент миоглобина и скопления энергетических субстратов в виде липидных капель и гранул гликогена (см. рис. 94).

Типы кардиомиоцитов в сердечной мышечной ткани различаются структурными и функциональными признаками, биологической ролью и топографией. Выделяют три основных типа кардиомиоцитов (см. рис. 93):

1)сократительные (рабочие) кардиомиоциты образуют основную часть миокарда и характеризуются мощно развитым сократительным аппаратом, занимающим бjльшую часть их саркоплазмы;

2)проводящие кардиомиоциты обладают способностью к генерации и быстрому проведению электрических импульсов. Они образуют узлы, пучки и волокна проводящей системы сердца и разделяются на несколько подтипов. Характеризуются слабым развитием сократительного аппарата, светлой саркоплазмой и крупными ядрами. В проводящих сердечных волокнах (Пуркинье) эти клетки имеют крупные размеры (см. рис. 93).

3)секреторные (эндокринные) кардиомиоциты располагаются в предсердиях (в особенности, пра-

вом) и характеризуются отростчатой формой и слабым развитием сократительного аппарата. В их саркоплазме вблизи полюсов ядра находятся окруженные мембраной плотные гранулы, содержащие предсердный натриуретический пептид (гормон, вызывающий потерю натрия и воды с мочой, расширение сосудов, снижение артериального давления).

Вставочные диски осуществляют связь кардиомиоцитов друг с другом. Под световым микроскопом они имеют вид поперечных прямых или зигзагообразных полосок, пересекающих сердечное мышечное волокно (см. рис. 92). Под электронным микроскопом определяется сложная организация вставочного диска, представляющего собой комплекс межклеточных соединений нескольких типов (см. рис. 94). В области поперечных (ориентированных перпендикулярно расположению миофибрилл) участков вставочного диска соседние кардиомиоциты образуют многочисленные интердигитации, связанные контактами типа десмосом и адгезивных фасций. Актиновые филаменты прикрепляются к поперечным участкам сарколеммы вставочного диска на уровне линии Z. На сарколемме продольных участков вставочного диска имеются многочисленные щелевые соединения (нексусы), обеспечивающие ионную связь кардиомиоцитов и передачу импульса сокращения.

Гладкая мышечная ткань входит в состав стенки полых (трубчатых) внутренних органов - бронхов, желудка, кишки, матки, маточных труб, мочеточников, мочевого пузыря (висцеральная гладкая мышечная ткань), а также сосудов (васкулярная гладкая мышечная ткань). Гладкая мышечная ткань встречается также в коже, где она образует мышцы, поднимающие волос, в капсулах и трабекулах некоторых органов (селезенка, яичко). Благодаря сократительной активности этой ткани обеспечивается деятельность органов пищеварительного тракта, регуляция дыхания, крово- и лимфотока, выделение мочи, транспорт половых клеток и др. Источником развития гладкой мышечной ткани у эмбриона является мезенхима. Свойствами гладких миоцитов обладают также некоторые клетки, имеющие другое происхождение - миоэпителиальные клетки (видоизмененные сократительные эпителиальные клетки в некоторых железах) и мионейральные клетки радужки глаза (развиваются из нейрального зачатка). Структурно-функциональной единицей гладкой мышечной ткани служит гладкий миоцит (гладкая мышечная клетка).

Гладкие миоциты (гладкие мышечные клетки) - вытянутые клетки преимущественно вере-

теновидной формы, не обладающие поперечной исчерченностью и образующие многочисленные соединения друг с другом (рис. 95-97). Сарколемма каждого гладкого миоцита окружена базальной мембраной, в которую вплетаются тонкие ретикулярные, коллагеновые и эластические волокна. Гладкие миоциты содержат одно удлиненное диплоидное ядро с преобладанием эухроматина и 1-2 ядрышками, расположенное в центральной утолщенной части клетки. В саркоплазме гладких миоцитов умеренно развитые органеллы общего значения располагаются вместе с включениями в конусовидных участках у полюсов ядра. Периферическая ее часть занята сократительным аппаратом - актиновыми и миозиновыми миофиламентами, которые в гладких миоцитах не формируют миофибрилл. Актиновые миофиламенты прикрепляются в саркоплазме к овальным или веретеновидным плотным тельцам (см. рис. 97) - структурам, гомологичным линиям Z в поперечнополосатых тканях; сходные образования, связанные с внутренней поверхностью сарколеммы, называют плотными пластинками.

Сокращение гладких миоцитов обеспечивается взаимодействием миофиламентов и развивается в соответствии с моделью скользящих нитей. Как и в поперечнополосатых мышечных тканях, сокращение гладких миоцитов индуцируется притоком Са 2+ в саркоплазму, который в этих клетках выделяется саркоплазматической сетью и кавеолами - многочисленными колбовидными впячиваниями поверхности сарколеммы. Благодаря выраженной синтетической активности гладкие миоциты продуцируют и выделяют (подобно фибробластам) коллагены, эластин и компоненты аморфного вещества. Они способны также синтезировать и секретировать ряд факторов роста и цитокинов.

Гладкая мышечная ткань в органах обычно представлена пластами, пучками и слоями гладких миоцитов (см. рис. 95), внутри которых клетки связаны интердигитациями, адгезивными и щелевыми соединениями. Расположение гладких миоцитов в пластах таково, что узкая часть одной клетки прилежит к широкой части другой. Это способствует наиболее компактной укладке миоцитов, обеспечению максимальной площади их взаимных контактов и высокой прочности ткани. В связи с описанным расположением гладких мышечных клеток в пласте на поперечных срезах соседствуют сечения миоцитов, разрезанных в широкой части и в области узкого края (см. рис. 95).

МЫШЕЧНЫЕ ТКАНИ

Рис. 87. Скелетная поперечнополосатая мышечная ткань

1 - мышечное волокно: 1.1 - сарколемма, покрытая базальной мембраной, 1.2 - саркоплазма, 1.2.1 - миофибриллы, 1.2.2 - поля миофибрилл (Конгейма); 1.3 - ядра мышечного волокна; 2 - эндомизий; 3 - прослойки рыхлой волокнистой соединительной ткани между пучками мышечных волокон: 3.1 - кровеносные сосуды, 3.2 - жировые клетки

Рис. 88. Скелетное мышечное волокно (схема):

1 - базальная мембрана; 2 - сарколемма; 3 - миосателлитоцит; 4 - ядро миосимпласта; 5 - изотропный диск: 5.1 - телофрагма; 6 - анизотропный диск; 7 - миофибриллы

Рис. 89. Участок миофибриллы волокна скелетной мышечной ткани (саркомер)

Рисунок с ЭМФ

1 - изотропный диск: 1.1 - тонкие (актиновые) миофиламенты, 1.2 - телофрагма; 2 - анизотропный диск: 2.1 - толстые (миозиновые) миофиламенты, 2.2 - мезофрагма, 2.3 - полоса Н; 3 - саркомер

Рис. 90. Скелетная мышца (поперечный срез)

Окраска: гематоксилин-эозин

1 - эпимизий; 2 - перимизий: 2.1 - кровеносные сосуды; 3 - пучки мышечных волокон: 3.1 - мышечные волокна, 3.2 - эндомизий: 3.2.1 - кровеносные сосуды

Рис. 91. Типы мышечных волокон (поперечный срез скелетной мышцы)

Гистохимическая реакция выявления сукцинатдегидрогеназы (СДГ)

1 - волокна I типа (красные волокна) - с высокой активностью СДГ (медленные, окислительные, устойчивые к утомлению); 2 - волокна IIВ типа (белые волокна) - с низкой активностью СДГ (быстрые, гликолитические, утомляемые); 3 - волокна IIА типа (промежуточные волокна) - с умеренной активностью СДГ (быстрые, окислительно-гликолитические, устойчивые к утомлению)

Рис. 92. Сердечная поперечнополосатая мышечная ткань

Окраска: железный гематоксилин

А - продольный срез; Б - поперечный срез:

1 - кардиомиоциты (образуют сердечные мышечные волокна): 1.1 - сарколемма, 1.2 - саркоплазма, 1.2.1 - миофибриллы, 1.3 - ядро; 2 - вставочные диски; 3 - анастомозы между волокнами; 4 - рыхлая волокнистая соединительная ткань: 4.1 - кровеносные сосуды

Рис. 93. Ультраструктурная организация кардиомиоцитов различных типов

Рисунки с ЭМФ

A - сократительный (рабочий) кардиомиоцит желудочка сердца:

1 - базальная мембрана; 2 - сарколемма; 3 - саркоплазма: 3.1 - миофибриллы, 3.2 - митохондрии, 3.3 - липидные капли; 4 - ядро; 5 - вставочный диск.

Б - кардиомиоцит проводящей системы сердца (из субэндокардиальной сети волокон Пуркинье):

1 - базальная мембрана; 2 - сарколемма; 3 - саркоплазма: 3.1 - миофибриллы, 3.2 - митохондрии; 3.3 - гранулы гликогена, 3.4 - промежуточные филаменты; 4 - ядра; 5 - вставочный диск.

В - эндокринный кардиомиоцит из предсердия:

1 - базальная мембрана; 2 - сарколемма; 3 - саркоплазма: 3.1 - миофибриллы, 3.2 - митохондрии, 3.3 - секреторные гранулы; 4 - ядро; 5 - вставочный диск

Рис. 94. Ультраструктурная организация области вставочного диска между соседними кардиомиоцитами

Рисунок с ЭМФ

1 - базальная мембрана; 2 - сарколемма; 3 - саркоплазма: 3.1 - миофибриллы, 3.1.1 - саркомер, 3.1.2 - изотропный диск, 3.1.3 - анизотропный диск, 3.1.4 - светлая полоса Н, 3.1.5 - телофрагма, 3.1.6 - мезофрагма, 3.2 - митохондрии, 3.3 - Т-трубочки, 3.4 - элементы саркоплазматической сети, 3.5 - липидные капли, 3.6 - гранулы гликогена; 4 - вставочный диск: 4.1 - интердигитации, 4.2 - адгезивная фасция, 4.3 - десмосома, 4.4 - щелевое соединение (нексус)

Рис. 95. Гладкая мышечная ткань

Окраска: гематоксилин-эозин

А - продольный срез; Б - поперечный срез:

1 - гладкие миоциты: 1.1 - сарколемма, 1.2 - саркоплазма, 1.3 - ядро; 2 - прослойки рыхлой волокнистой соединительной ткани между пучками гладких миоцитов: 2.1 - кровеносные сосуды

Рис. 96. Изолированные гладкие мышечные клетки

Окраска: гематоксилин

1 - ядро; 2 - саркоплазма; 3 - сарколемма

Рис. 97. Ультраструктурная организация гладкого миоцита (участок клетки)

Рисунок с ЭМФ

1 - сарколемма; 2 - саркоплазма: 2.1 - митохондрии, 2.2 - плотные тельца; 3 - ядро; 4 - базальная мембрана

1. Виды мышечной ткани

2. Поперечно-полосатая скелетная ткань

6. Гладкая мышечная ткань

1. Свойством сократимости обладают практически все виды клеток, благодаря наличию в их цитоплазме сократительного аппарата, представленного сетью тонких микрофиламентов (5-7 нм), состоящих из сократительных белков - актина, миозина, тропомиозина и других. За счет взаимодействия названных белков микрофиламентов осуществляются сократительные процессы и обеспечивается движение в цитоплазме гиалоплазмы, органелл, вакуолей, образование псевдоподий и инвагинаций плазмолеммы, а также процессы фаго- и пиноцитоза, экзоцитоза, деления и перемещения клеток. Содержание сократительных элементов, а, следовательно, и сократительные процессы неодинаково выражены в разных типах клеток. Наиболее выражены сократительные структуры в клетках, основной функцией которых является сокращение. Такие клетки или их производные образуют мышечные ткани, которые обеспечивают сократительные процессы в полых внутренних органах и сосудах, перемещение частей тела относительно друг друга, поддержание позы и перемещение организма в пространстве. Помимо движения при сокращении выделяется большое количество тепла, а, следовательно, мышечные ткани участвуют в терморегуляции организма. Мышечные ткани неодинаковы по строению, источникам происхождения и иннервации, по функциональным особенностям. Наконец, следует отметить, что любая разновидность мышечной ткани, помимо сократительных элементов (мышечных клеток и мышечных волокон) включает в себя клеточные элементы и волокна рыхлой волокнистой соединительной ткани и сосуды, которые обеспечивают трофику мышечных элементов, осуществляют передачу усилий сокращения мышечных элементов на скелет. Однако, функционально ведущими элементами мышечных тканей являются мышечные клетки или мышечные волокна.

Классификация мышечных тканей

· Гладкая (неисчерченная)- мезенхимная;

· специальная - нейрального происхождения и эпидермального происхождения;

· Поперечно-полосатая (исчерченная)- скелетная;

· сердечная.

Как видно из представленной классификации мышечная ткань подразделяется по строению на две основные группы - гладкую и поперечно-полосатую. Каждая из двух групп в свою очередь подразделяется на разновидности, как по источникам происхождения, так и по строению и функциональным особенностям. Гладкая мышечная ткань , входящая в состав внутренних органов и сосудов, развивается из мезенхимы. К специальным мышечным тканям нейрального происхождения относятся гладкомышечные клетки радужной оболочки, эпидермального происхождения - миоэпителиальные клетки слюнных, слезных, потовых и молочных желез.



Поперечно-полосатая мышечная ткань подразделяется на скелетную и сердечную. Обе эти разновидности развиваются из мезодермы, но из разных ее частей: скелетная - из миотомов сомитов, сердечная - из висцерального листка спланхнотома.

Каждая разновидность мышечной ткани имеет свою структурно-функциональную единицу. Структурно-функциональной единицей гладкой мышечной ткани внутренних органов и радужной оболочки является гладкомышечная клетка - миоцит; специальной мышечной ткани эпидермального происхождения - корзинчатый миоэпителиоцит ; сердечной мышечной ткани - кардиомиоцит ; скелетной мышечной ткани - мышечное волокно.

2. Поперечно-полосатая скелетная мышечная ткань

Структурно-функциональной единицей поперечно полосатой мышечной ткани является мышечное волокно . Оно представляет собой вытянутое цилиндрическое образование с заостренными концами длиной от 1 мм до 40 мм (а по некоторым данным до 120 мм), диаметром 0,1 мм. Мышечное волокно окружено оболочкой - сарколеммой, в которой под электронным микроскопом отчетливо выделяются два листка: внутренний - является типичной плазмолеммой, а наружный представляет собой тонкую соединительнотканную пластинку - базальную пластинку . В узкой щели между плазмолеммой и базальной пластинкой располагаются мелкие клетки - миосателлиты . Таким образом, мышечное волокно является комплексным образованием и состоит из следующих основных структурных компонентов :

· миосимпласта;

· клеток миосателиттов;

· базальной пластинки.

Базальная пластинка образована тонкими коллагеновыми и ретикулярными волокнами, относится к опорному аппарату и выполняет вспомогательную функцию передачи сил сокращения на соединительнотканные элементы мышцы.

Клетки миосателлиты являются камбиальными (ростковыми) элементами мышечных волокон и играют роль в процессах их физиологической и репаративной регенерации.

Миосимпласт является основным структурным компонентом мышечного волокна как по объему, так и по выполняемым функциям. Он образуется посредством слияния самостоятельных недифференцированных мышечных клеток - миобластов . Миосимпласт можно рассматривать как вытянутую гигантскую многоядерную клетку, состоящую из большого числа ядер, цитоплазмы (саркоплазмы), плазмолеммы, включений, общих и специальных органелл. В миосимпласте содержится несколько тысяч (до 10 000) продольно вытянутых светлых ядер, располагающихся на периферии под плазмолеммой. Вблизи ядер локализуются фрагменты слабовыраженной зернистой эндоплазматической сети, пластинчатого комплекса и небольшое число митохондрий. Центриоли в симпласте отсутствуют. В саркоплазме содержатся включения гликогена и миоглобина, аналога гемоглобина эритроцитов. Отличительной особенностью миосимпласта является также наличие в нем специализированных органелл , к которым относятся:

· миофибриллы;

· саркоплазматическая сеть;

· канальцы Т-системы.

Миофибриллы - сократительные элементы миосимпласта - в большом количестве (до 1000-2000) локализуются в центральной части саркоплазмы миосимпласта. Они объединяются в пучки, между которыми содержатся прослойки саркоплазмы. Между миофибриллами локализуется большое число митохондрий (саркосом). Каждая миофибрилла простирается продольно на протяжении всего миосимпласта и своими свободными концами прикрепляется к его плазмолемме у конических концов. Диаметр миофибриллы составляет 0,2-0,5 мкм. По своему строению миофибриллы неоднородны по протяжению и подразделяются на темные (анизотропные) или А-диски, и светлые (изотропные) или I-диски. Темные и светлые диски всех миофибрилл располагаются на одном уровне и обуславливают поперечную исчерченность всего мышечного волокна. Темные и светлые диски в свою очередь состоят из еще более тонких волоконец - протофибрилл или миофиламентов . Темные диски образованы более толстыми миофиламентами (10-12 нм), состоящими из белка миозина. Светлые диски образованы тонкими миофиламентами (5-7 нм), состоящими из белка актина. Посредине I-диска поперечно актиновым миофиламентам проходит темная полоска - телофрагма или Z-линия, посредине А-диска проходит менее выраженная М-линия или мезофрагма. Актиновые миофиламенты по средине I-диска скрепляются белками, составляющими Z-линию, свободными концами частично входит в А-диск между толстыми миофиламентами. При этом, вокруг одного миозинового филамента располагаются 6 актиновых. При частичном сокращении миофибриллы актиновые миофиламенты как бы втягиваются в А-диск и в нем образуется светлая зона или Н-полоска, ограниченная свободными концами актиновых миофиламентов. Ширина Н-полоски зависит от степени сокращения миофибриллы.

Участок миофибриллы, расположенный между двумя Z-линиями носит название саркомера и является структурно-функциональной единицей миофибриллы. Саркомер включает в себя А-диск и расположенные по сторонам от него две половины I-диска. Следовательно, каждая миофибрилла представляет собой совокупность саркомеров. Именно в саркомере осуществляется процесс сокращения. Следует отметить, что конечные саркомеры каждой миофибриллы прикрепляются к плазмолемме миосимпласта актиновыми миофиламентами. Структурные элементы саркомера в расслабленном состоянии можно выразить формулой :

Z+1/2I+1/2A+M+1/2A+1/2I+Z

Процесс сокращения осуществляется посредством взаимодействия актиновых и миозиновых филаментов и образования между ними актин-миозиновых мостиков , посредством которых происходит втягивание актиновых миофиламентов в А-диски укорочение саркомера. Для развития этого процесса необходимы три условия :

· наличие энергии в виде АТФ;

· наличие ионов кальция;

· наличие биопотенциала.

АТФ образуется в саркосомах (митохондриях) в большом числе локализованных между миофибриллами. Выполнение двух последних условий осуществляется с помощью еще двух специализированных органелл -саркоплазматической сети и Т-канальцев.

Саркоплазматическая сеть представляет собой видоизмененную гладкую эндоплазматическую сеть и состоит из расширенных полостей и анастомозирующих канальцев, окружающих миофибриллы. При этом саркоплазматическая сеть подразделяется на фрагменты, окружающие отдельные саркомеры. Каждый фрагмент состоит из двух терминальных цистерн, соединенных полыми анастомозирующими канальцами - L-канальцами. При этом терминальные цистерны охватывают саркомер в области I-дисков, а канальцы - в области А-диска. В терминальных цистернах и канальцах содержатся ионы кальция, которые при поступлении нервного импульса и достижении волны деполяризации мембран саркоплазматической сети, выходят из цистерн и канальцев и распределяются между актиновыми и миозиновыми миофиламентами, инициируя их взаимодействие. После прекращения волны деполяризации ионы кальция устремляются обратно в терминальные цистерны и канальцы. Таким образом, саркоплазматическая сеть является не только резервуаром для ионов кальция, но и играет роль кальциевого насоса.

Волна деполяризации передается на саркоплазматическую сеть от нервного окончания вначале по плазмолемме, а затем по Т-канальцам, которые не являются самостоятельными структурными элементами. Они представляют собой трубчатые выпячивания плазмолеммы в саркоплазму. Проникая вглубь, Т-канальцы разветвляются и охватывают каждую миофибриллу в пределах одного пучка строго на одном уровне, обычно на уровне Z-полоски или несколько медиальнее - в области соединения актиновых и миозиновых миофиламентов . Следовательно, к каждому саркомеру подходят и окружают его два Т-канальца. По сторонам от каждого Т-канальца располагаются две терминальные цистерны саркоплазматической сети соседних саркомеров, которые вместе с Т-канальцами составляют триаду. Между стенкой Т-канальца и стенками терминальных цистерн имеются контакты, через которые волна деполяризации передается на мембраны цистерн и обуславливает выход из них ионов кальция и начало сокращения. Таким образом, функциональная роль Т-канальцев заключается в передаче биопотенциала с плазмолеммы на саркоплазматическую сеть.

Для взаимодействия актиновых и миозиновых миофиламентов и последующего сокращения кроме ионов кальция необходима также энергия в виде АТФ, которая вырабатывается в саркосомах, в большом количестве располагающихся между миофибриллами.

Процесс взаимодействия актиновых и миозиновых филаментов упрощенно можно представить в следующем виде. Под влиянием ионов кальция стимулируется АТФ-азная активность миозина, что приводит к расщеплению АТФ, с образованием АДФ и энергии. Благодаря выделившейся энергии устанавливаются мостики между актином и миозином (а конкретнее, образуются мостики между головками белка миозина и определенными точками на актиновом филаменте)и за счет укорочения этих мостиков происходит подтягивание актиновых филаментов между миозиновыми. Затем эти связи распадаются (опять же с использованием энергии) и головки миозина образуют новые контакты с другими точками на актиновом филаменте, но расположенными дистальнее предыдущих. Так происходит постепенное втягивание актиновых филаментов между миозиновыми и укорочение саркомера . Степень этого сокращения зависит от концентрации ионов кальция вблизи миофиламентов и от содержания АТФ. После смерти организма АТФ в саркосомах не образуется, ее остатки расходуются на образование актин-миозиновых мостиков, а на распад уже не хватает, следствием чего наступает посмертное окоченение мышц, которое прекращается после аутолиза (распада) тканевых элементов.

При полном сокращении саркомера актиновые филаменты достигают М-полоски саркомера. При этом исчезают Н-полоски и I-диски, а формула саркомера может быть выражена в следующем виде:

Z+1/2IA+M+1/2AI+Z

При частичном сокращении формулу саркомера можно представить в следующем виде:

Z+1/nI+1/nIA+1/2H+M+1/2H+1/nAJ+1/nI+Z

Одновременное содружественное сокращение всех саркомеров каждой миофибриллы приводит к сокращению всего мышечного волокна. Крайние саркомеры каждой миофибриллы прикрепляются актиновыми миофиламентами к плазмолемме миосимпласта, которая на концах мышечного волокна имеет складчатый характер. При этом, на концах мышечного волокна базальная пластинка не заходит в складки плазмолеммы. Ее прободают тонкие коллагеновые и ретикулярные волокна, проникают в углубления складок плазмолеммы и прикрепляются в тех ее местах, к которым с внутренней стороны прикрепляются актиновые филаменты дистальных саркомеров. Благодаря этому создается прочная связь миосимпласта с волокнистыми структурами эндомизия. Коллагеновые и ретикулярные волокна концевых мышечных волокон, вместе с волокнистыми структурами эндомизия и перимизия в совокупности образуют сухожилия мышц, которые прикрепляются к определенным точкам скелета или вплетаются в сетчатый слой дермы в области лица. Благодаря сокращению мышц происходит перемещение частей или всего организма, а также изменение рельефа лица.

В мышечной ткани различают два основных типа мышечных волокон, между которыми имеются промежуточные, отличающиеся между собой прежде всего особенностями обменных процессов и функциональными свойствами и в меньшей степени - структурными особенностями.

Волокна I типа - красные мышечные волокна - характеризуются прежде всего высоким содержанием в саркоплазме миоглобина (что и придает им красный цвет), большим числом саркосом, высокой активностью в них сукцинатдегидрогеназы (СДГ), высокой активностью АТФ-азы медленного типа. Эти волокна обладают способностью медленного, но длительного тонического сокращения и малой утомляемостью.

Волокна II типа - белые мышечные волокна - характеризуются незначительным содержанием миоглобина, но высоким содержанием гликогена, высокой активностью фосфорилазы и АТФ-базы быстрого типа. Функционально характеризуются способностью быстрого, сильного, но непродолжительного сокращения. Между двумя крайними типами мышечных волокон находятся промежуточные, характеризующиеся различными сочетаниями названных включений и разной активностью перечисленных ферментов.

Мышца как орган состоит из мышечных волокон, волокнистой соединительной ткани, сосудов и нервов. Мышца - это анатомическое образование, основным и функционально ведущим структурным компонентом которого является мышечная ткань. Поэтому не следует рассматривать как синонимы понятия мышечная ткань и мышца.

Волокнистая соединительная ткань образует прослойки в мышце: эндомизий, перимизий и эпимизий, а также сухожилия. Эндомизий окружает каждое мышечное волокно, состоит из рыхлой волокнистой соединительной ткани и содержит кровеносные и лимфатические сосуды, в основном капилляры, посредством которых обеспечивается трофика волокна. Коллагеновые и ретикулярные волокна эндомизия проникают в базальную пластинку мышечного волокна, тесно с ним связаны и передают силы сокращения волокна на точки скелета. Перимизий окружает несколько мышечных волокон, собранных в пучки. В нем содержатся более крупные сосуды (артерии и вены, а также артериоло-венулярные анастомозы).

Эпимизий или фасция окружает всю мышцу, способствует функционированию мышцы, как органа. Любая мышца содержит все типы мышечных волокон в различном количественном соотношении. В мышцах, обеспечивающих поддержание позы, преобладают красные волокна, в мышцах, обеспечивающих движение пальцев и кистей, преобладают белые или переходные волокна. Характер мышечного волокна может меняться в зависимости от функциональной нагрузки и тренировки. Установлено, что биохимические, структурные и функциональные особенности мышечного волокна зависят от иннервации. Перекрестная пересадка эфферентных нервных волокон и их окончаний с красного волокна на белое и наоборот приводит к изменению обмена, а также структурных и функциональных особенностей в этих волокнах на противоположный тип.

3. Гистогенез и регенерация мышечной ткани

Из миотомов мезодермы в определенные участки мезенхимы выселяются малодифференцированные клетки - миобласты , часть из которых выстраивается в виде цепочки в стык друг к другу. В области контактов миобластов цитолеммы исчезает и образуется симпластическое образование - миотрубка, в которой ядра в виде цепочки располагаются в середине, а по периферии начинают дифференцироваться из миофиламентов миофибриллы. К миотрубке подрастают нервные волокна, образуя двигательные нервные окончания. Под влиянием эфферентной нервной импульсации начинается перестройка мышечной трубки в мышечное волокно: ядра перемещаются на периферию симпласта к плазмолемме, а миофибриллы занимают его центральную часть, из гладкой эндоплазматической сети развивается саркоплазматическая сеть, окружающая каждую миофибриллу на всем ее протяжении. Плазмолемма миосимпласта образует глубокие трубчатые впячивания - Т-канальцы. За счет деятельности зернистой эндоплазматической сети вначале миобластов, а затем и мышечных труб синтезируются и выделяются с помощью пластинчатого комплекса белки и полисахариды, из которых формируется базальная пластинка мышечного волокна.

Следует отметить, что при формировании миотрубки, а затем и дифференцировки мышечного волокна часть миобластов не входит в состав симпласта, а прилежит к нему, располагаясь под базальной пластинкой. Эти клетки носят название миосателлитов и играют важную роль в процессах физиологической и репаративной регенерации. Установлено, что закладка поперечно-полосатых скелетных мышечных волокон (миогенез) происходит только в эмбриональный период. В постнатальном периоде осуществляется их дальнейшая дифференцировка и гипертрофия, но количество мышечных волокон даже в условиях интенсивной тренировки не увеличивается.

Регенерация скелетной мышечной ткани

В мышечной, как в других тканях, различают два вида регенерации - физиологическую и репаративную. Физиологическая регенерация проявляется в форме гипертрофии мышечных волокон, что выражается в увеличении их толщины и даже длины, увеличение числа органелл, главным образом миофибрилл, а также нарастании числа ядер, что в конечном счете проявляется увеличением функциональной способности мышечного волокна. Радиоизотопным методом установлено, что увеличение числа ядер в мышечных волокнах в условиях гипертрофии достигается за счет деления клеток миосателлитов и последующего вхождения в миосимпласт дочерних клеток.

Увеличение числа миофибрилл осуществляется посредством синтеза актиновых и миозиновых белков свободными рибосомами и последующей сборки этих белков в актиновые и миозиновые миофиламенты параллельно с соответствующими филаментами саркомеров. В результате этого вначале происходит утолщение миофибрилл, а затем их расщепление и образование дочерних миофибрилл. Кроме того возможно образование новых актиновых и миозиновых миофиламентов не параллельно, а встык предшествующим миофибриллам, чем достигается их удлинение. Саркоплазматическая сеть и Т-канальцы в гипертрофирующемся волокне образуются за счет разрастания предшествующих элементов. При определенных видах мышечной тренировки может формироваться преимущественно красный тип мышечных волокон (у стайеров) или белый тип мышечных волокон (у спринтеров). Возрастная гипертрофия мышечных волокон интенсивно проявляется с началом двигательной активности организма (1-2 года), что обусловлено прежде всего усилением нервной стимуляции. В старческом возрасте, а также в условиях малой мышечной нагрузки наступает атрофия специальных и общих органелл, истончение мышечных волокон и снижение их функциональной способности.

Репаративная регенерация развивается после повреждения мышечных волокон. При этом способ регенерации зависит от величины дефекта. При значительных повреждениях на протяжении мышечного волокна миосателлиты в области повреждения и в прилежащих участках растормаживаются, усиленно пролиферируют, а затем мигрируют в область дефекта мышечного волокна, где выстраиваются в цепочки, формируя миотрубку. Последующая дифференцировка миотрубки приводит к восполнению дефекта и восстановлению целостности мышечного волокна. В условиях небольшого дефекта мышечного волокна на его концах, за счет регенерации внутриклеточных органелл, образуются мышечные почки , которые растут навстречу друг другу, а затем сливаются, приводя к закрытию дефекта. Однако, репаративная регенерация и восстановление целостности мышечных волокон могут осуществляться при определенных условиях: во-первых, при сохраненной двигательной иннервации мышечных волокон, во-вторых, если в область повреждения не попадают элементы соединительной ткани (фибробласты). Иначе на месте дефекта мышечного волокна развивается соединительно-тканный рубец.

Советским ученым А. Н. Студитским доказана возможность аутотрансплантации скелетной мышечной ткани и даже целых мышц при соблюдении определенных условий :

· механическое измельчение мышечной ткани трансплантата, с целью растормаживания клеток-сателлитов и последующей их пролиферации;

· помещение измельченной ткани в фасциальное ложе;

· подшивание двигательного нервного волокна к измельченному трансплантату;

· наличие сократительных движений мышц-антагонистов и синергистов.

4. Иннервация и кровоснабжение скелетных мышц

Скелетные мышцы получают двигательную, чувствительную и трофическую (вегетативную) иннервацию. Двигательную (эфферентную) иннервацию скелетные мышцы туловища и конечностей получают от мотонейронов передних рогов спинного мозга, а мышцы лица и головы - от двигательных нейронов определенных черепных нервов. При этом к каждому мышечному волокну подходит или ответвление от аксона мотонейрона, или же весь аксон. В мышцах, обеспечивающих тонкие координированные движения (мышцы кистей, предплечий, шеи), каждое мышечное волокно иннервируется одним мотонейроном. В мышцах, обеспечивающих преимущественно поддержание позы, десятки и даже сотни мышечных волокон получают двигательную иннервацию от одного мотонейрона, посредством разветвления его аксона.

Двигательное нервное волокно , подойдя к мышечному волокну, проникает под эндомизий и базальную пластинку и распадается на терминали, которые вместе с прилежащим специфическим участком миосимпласта образуют аксо-мышечный синапс или моторную бляшку. Под влиянием нервного импульса волна деполяризации с нервного окончания передается на плазмолемму миосимпласта, распространяется далее по Т-канальцам и в области триад передается на терминальные цистерны саркоплазматической сети, обуславливая выход ионов кальция и начало процесса сокращения мышечного волокна.

Чувствительная (афферентная) иннервация скелетных мышц осуществляется псевдоуниполярными нейронами спинальных ганглиев, посредством разнообразных рецепторных окончаний дендритов этих клеток. Рецепторные окончания скелетных мышц можно разделить на две группы:

I. специфические рецепторные приборы, характерные только для скелетных мышц:

· мышечное веретено;

· сухожильный орган Гольджи;

II. неспецифические рецепторные окончания кустиковидной или древовидной формы, распределяющиеся в рыхлой соединительной ткани эндомизия, перимизия и эпимизия.

Мышечные веретена - довольно сложно устроенные инкапсулированные приборы. В каждой мышце содержится от нескольких единиц до нескольких десятков и даже сотен мышечных веретен. Каждое мышечное веретено содержит не только нервные элементы, но также 10-12 специфических мышечных волокон - интрафузальных , окруженных капсулой. Эти волокна располагаются параллельно сократительным мышечным волокнам (экстрафузальным) и получают не только чувствительную, но и специальную двигательную иннервацию. Мышечные веретена воспринимают раздражения как при растяжении данной мышцы, вызванном сокращением мышц-антагонистов, так и при ее сокращении.

Сухожильные органы представляют собой специализированные инкапсулированные рецепторы, включающие несколько сухожильных волокон, окруженных капсулой, среди которых распределяются терминальные ветвления дендрита псевдоуниполярного нейрона. При сокращении мышцы сухожильные волокна сближаются и сдавливают нервные окончания. Сухожильные органы воспринимают только степень сокращения данной мышцы. Посредством мышечных веретен и сухожильных органов при участии спинальных центров обеспечивается автоматизм движений (например, при ходьбе).

Трофическая иннервация обеспечивается вегетативной нервной системой (ее симпатической частью) и осуществляется в основном опосредованно, посредством иннервации сосудов.

Скелетные мышцы богато снабжаются кровью. В рыхлой соединительной ткани перимизия в большом количестве содержатся артерии и вены, артериолы, венулы и артериоло-венулярные анастомозы. В эндомизии располагаются только капилляры, преимущественно узкие (4,5-7 мкм), которые и обеспечивают трофику мышечного волокна. Мышечное волокно, вместе с окружающими его капиллярами и двигательным окончанием составляют мион. В мышцах содержится большое количество артериоло-венулярных анастомозов, обеспечивающих адекватное кровоснабжение при различной мышечной активности.

5. Сердечная поперечно-полосатая мышечная ткань

Структурно-функциональной единицей является клетка -кардиомиоцит . По строению и функциям кардиомиоциты подразделяются на две основные группы :

· типичные или сократительные кардиомиоциты, образующие своей совокупностью миокард;

· атипичные кардиомиоциты, составляющие проводящую систему сердца и подразделяющиеся в свою очередь на три разновидности.

Сократительный кардиомиоцит представляет собой почти прямоугольную клетку 50-120 мкм в длину, шириной 15-20 мкм, в центре которой локализуется обычно одно ядро. Покрыт снаружи базальной пластинкой. В саркоплазме кардиомиоцита по периферии от ядра располагаются миофибриллы, а между ними и около ядра локализуются в большом количестве митохондрии. В отличие от скелетной мышечной ткани, миофибриллы кардиомиоцитов представляют собой не отдельные цилиндрические образования, а по существу сеть, состоящую из анастомозирующих миофибрилл, так как некоторые миофиламенты как бы отщепляются от одной миофибриллы и наискось продолжаются в другую. Кроме того, темные и светлые диски соседних миофибрилл не всегда располагаются на одном уровне, и потому поперечная исчерченность в кардиомиоцитах выражена не столь отчетливо, как в скелетных мышечных волокнах. Саркоплазматическая сеть, охватывающая миофибриллы, представлена расширенными анастомозирующими канальцами. Терминальные цистерны и триады отсутствуют. Т-канальцы имеются, но они короткие, широкие и образованы не только углублением плазмолеммы, но и базальной пластинки. Механизм сокращения в кардиомиоцитах практически не отличается от такового в скелетных мышечных волокнах.

Сократительные кардиомиоциты , соединяясь встык друг с другом, образуют функциональные мышечные волокна, между которыми имеются многочисленные анастомозы. Благодаря этому из отдельных кардиомиоцитов формируется сеть - функциональный синтиций . Наличие щелевидных контактов между кардиомиоцитами обеспечивает одновременное и содружественное их сокращение вначале в предсердиях, а затем и в желудочках.

Области контактов соседних кардиомиоцитов носят название вставочных дисков. Фактически, никаких дополнительных структур (диском между кардиомиоцитами нет. Вставочные диски - это места контактов цитолеммы соседних кардиомиоцитов, включающие в себя простые, десмосомные и щелевидные контакты. Обычно во вставочных дисках различают поперечный и продольный фрагменты. В области поперечных фрагментов имеются расширенные десмосомные соединения. В этих же местах с внутренней стороны плазмолемм прикрепляются актиновые филаменты саркомеров. В области продольных фрагментов локализуются щелевидные контакты. Посредством вставочных дисков обеспечивается как механическая, так и метаболическая (прежде всего ионная) связь кардиомиоцитов.

Сократительные кардиомиоциты предсердий и желудочков несколько отличаются между собой по морфологии и функциям. Так, кардиомиоциты предсердий в саркоплазме содержат меньше миофибрилл и митохондрий, в них почти не выражены Т-канальцы, а вместо них под плазмолеммой выявляются в большом числе везикулы и кавеолы - аналоги Т-канальцев. Кроме того, в саркоплазме предсердных кардиомиоцитов у полюсов ядер локализуются специфические предсердные гранулы, состоящие из гликопротеиновых комплексов. Выделяясь из кардиомиоцитов в кровь предсердий, эти вещества влияют на уровень давления крови в сердце и сосудах, а также препятствуют образованию тромбов в предсердиях. Следовательно, предсердные кардиомиоциты, кроме сократительной, обладают и секреторной функцией. В желудочковых кардиомиоцитах более выражены сократительные элементы, а секреторные гранулы отсутствуют.

Вторая разновидность кардиомиоцитов - атипичные кардиомиоциты образуют проводящую систему сердца , состоящую из:

· синусо-предсердный узел;

· предсердно-желудочковый узел;

· предсердно-желудочковый пучок (пучок Гиса)ствол, правую и левую ножки;

· концевые разветвления ножек - волокна Пункинье.

Атипичные кардиомиоциты обеспечивают генерирование биопотенциалов, их проведение и передачу на сократительные кардиомиоциты.

По своей морфологии атипичные кардиомиоциты отличаются от типичным рядом особенностей :

· они крупнее (длина 100 мкм, толщина 50 мкм);

· в цитоплазме содержимся мало миофибрилл, которые расположены неупорядочено и потому атипичные кардиомиоциты не имеют поперечной исчерченности;

· плазмолемма не образует Т-канальцев;

· во вставочных дисках между этими клетками отсутствуют десмосомы и щелевидные контакты.

Атипичные кардиомиоциты различных отделов проводящей системы отличаются между собой по структуре и функциям и подразделяются на три основные разновидности :

· Р-клетки (пейсмекеры) водители ритма (I типа);

· переходные клетки (II типа);

· клетки пучка Гиса и волокон Пуркинье (III тип).

Клетки I типа (Р-клетки) составляют основу синусо-предсердного узла, а также в небольшом количестве содержатся в атриовентрикулярном узле. Эти клетки способны самостоятельно генерировать с определенной частотой биопотенциалы и передавать их на переходные клетки (II типа), а последние передают импульсы на клетки III типа, от которых биопотенциалы передаются на сократительные кардиомиоциты.

Источники развития кардиомиоцитов - миоэпителиальные пластинки, представляющие собой определенные участки висцеральных листков спланхнотома, а конкретнееиз целомического эпителия этих участков.

Иннервация сердечной мышечной ткани

Биопотенциалы сократительные кардиомиоциты получают из двух источников:

· из проводящей системы сердца (прежде всего из синусо-предсердного узла);

· из вегетативной нервной системы (из ее симпатической и парасимпатической части).

Регенерация сердечной мышечной ткани

Кардиомиоциты регенерируют только по внутриклеточному типу. Пролиферации кардиомиоцитов не наблюдается. Камбиальные элементы в сердечной мышечной ткани отсутствуют. При поражении значительных участков миокарда (в частности, при инфаркте миокарда) восстановление дефекта происходит за счет разрастания соединительной ткани и образования рубцов (пластическая регенерация). Естественно, что сократительная функция в этих участках отсутствует. Поражение проводящей системы сопровождается нарушением ритма сердечных сокращений.

6. Гладкие мышечные ткани

Подавляющая часть гладкой мышечной ткани организма (внутренних органов и сосудов) имеет мезенхимальное происхождение.

Структурно-функциональной единицей гладкой мышечной ткани внутренних органов и сосудов является миоцит . Представляет собой чаще всего веретенообразную клетку (длиной 20-500 мкм, диаметром 5-8 мкм), покрытую снаружи базальной пластинкой, но встречаются и отростчатые миоциты. В центре располагается вытянутое ядро, по полюсам которого локализуются общие органеллы: зернистая эндоплазматическая сеть, пластинчатый комплекс, митохондрии, цитоцентр. В цитоплазме содержатся толстые (17 нм) миозиновые и тонкие (7 нм) актиновые миофиламенты, которые располагаются в основном параллельно друг другу вдоль оси миоцита и не образуют А и I диски, чем и объясняется отсутствие поперечной исчерченности миоцитов. В цитоплазме миоцитов и на внутренней поверхности плазмолеммы встречаются многочисленные плотные тельца, к которым прикрепляются актиновые, миозиновые, а так же промежуточные филаменты. Плазмолемма образует небольшие углубления - кавеолы, которые рассматриваются как аналоги Т-канальцев. Под плазмолеммой локализуются многочисленные везикулы, которые вместе с тонкими канальцами цитоплазмы являются элементами саркоплазматической сети.

Механизм сокращения в миоцитах в принципе сходен с сокращением саркомеров в миофибриллах в скелетных мышечных волокнах. Он осуществляется за счет взаимодействия и скольжения актиновых миофиламентов вдоль миозиновых. Для такого взаимодействия также необходимы энергия в виде АТФ, ионы кальция и наличие биопотенциала. Биопотенциалы поступают от эфферентных окончаний вегетативных нервных волокон непосредственно на миоциты или опосредованно от соседних клеток через щелевидные контакты и передаются через кавеолы на элементы саркоплазматической сети, обуславливая выход из них ионов кальция в саркоплазму. Под влиянием ионов кальция развиваются механизмы взаимодействия между актиновыми и миозиновыми филаментами, аналогичные тем, которые происходят в саркомерах скелетных мышечных волокон, в результате чего происходит скольжение названных миофиламентов и перемещение плотных телец в цитоплазме. В миоцитах, кроме актиновых и миозиновых филаментов, имеются еще промежуточные, которые одним концом прикрепляются к цитоплазматическим плотным тельцам, а другим - прикрепительным тельцам на плазмолемме и таким образом передают усилия взаимодействия актиновых и миозиновых филаментов на сарколемму миоцита, чем и достигается его укорочение.

Миоциты окружены снаружи рыхлой волокнистой соединительной тканью - эндомизием и связаны друг с другом боковыми поверхностями. При этом, в области тесного контакта соседних миоцитов базальные пластинки прерываются. Миоциты соприкасаются непосредственно плазмолеммами и в этих местах имеются щелевидные контакты, через которые осуществляется ионная связь и передача биопотенциала с одного миоцита на другой, что приводит к одновременному и содружественному их сокращению. Цепь миоцитов, объединенных механической и метаболической связью, составляет функциональное мышечное волокно. В эндомизии проходят кровеносные капилляры, обеспечивающие трофику миоцитов, а в прослойках соединительной ткани между пучками и слоями миоцитов в перимизии проходят более крупные сосуды и нервы, а также сосудистые и нервные сплетения.

Эфферентная иннервация гладкой мышечной ткани осуществляется вегетативной нервной системой. При этом, терминальные веточки аксонов эфферентных вегетативных нейронов, проходя по поверхности нескольких миоцитов, образуют на них небольшие варикозные утолщения, которые несколько прогибают плазмолемму и образуют мионевральные синапсы . При поступлении нервных импульсов в синаптическую щель выделяются медиаторы (ацетилхолин или норадреналин), и обуславливают деполяризацию мембран миоцитов и последующее их сокращение. Через щелевидные контакты биопотенциалы переходят из одного миоцита на другой, что сопровождается возбуждением и сокращением и тех гладкомышечных клеток, которые не содержат нервных окончаний. Возбуждение и сокращение миоцитов обычно продолжительны и обеспечивают тоническое сокращение гладкой мышечной ткани сосудов и полых внутренних органов, в том числе гладкомышечных сфинктеров. В этих органах содержатся и многочисленные рецепторные окончания в виде кустиков, деревцев или диффузных полей.

Регенерация гладкой мышечной ткани осуществляется несколькими способами:

· посредством внутриклеточной регенерациигипертрофии при усилении функциональной нагрузки;

· посредством митотического деления миоцитов при их повреждении (репаративная регенерация);

· посредством дифференцировки из камбиальных элементов - из адвентициальных клеток и миофибробластов.

7. Специальные гладкомышечные ткани

Нейрального происхождения развиваются из нейроэктодермы, из краев стенки глазного бокала, являющегося выпячиванием промежуточного мозга. Из этого источника развиваются миоциты, которые образуют две мышцы радужной оболочки глаза: мышцу суживающую зрачок и мышцу расширяющую зрачок. По своей морфологии миоциты радужной оболочки не отличаются от мезенхимных миоцитов, однако, отличаются по иннервации. Каждый миоцит получает вегетативную эфферентную иннервацию (мышца расширяющая зрачок - симпатическую, мышца суживающая зрачок -парасимпатическую). Благодаря этому, названные мышцы сокращаются быстро и координировано, в зависимости от мощности светового пучка.

Эпидермального происхождения развиваются из кожной эктодермы и представляют собой не типичные веретеновидные миоциты, а клетки звездчатой формы - миоэпителиальные клетки, располагающиеся в концевых отделах слюнных, молочных, слезных и потовых желез, снаружи от секреторных клеток. В своих отростках миоэпителиальные клетки содержат актиновые и миозиновые филаменты, благодаря взаимодействию которых отростки клеток сокращаются и способствуют выделению секрета из концевых отделов и мелких протоков названных желез в более крупные протоки. Эфферентную иннервацию получают также из вегетативного отдела нервной системы.


Самое обсуждаемое
Всероссийский фестиваль «Физические минутки на уроках Всероссийский фестиваль «Физические минутки на уроках
Ретро-фото валерия газзаева Ретро-фото валерия газзаева
Восстановление зрения по норбекову Восстановление зрения по норбекову


top